Каналы связи: виды, характеристики. Линии связи и каналы передачи данных Особенности различных каналов связи

К основным характеристикам канала связи относятся следующие:

  • время действия кана,за Т к - время, в течение которого канал связи выполняет свои функции;
  • полоса пропускания А/ к - полоса частот колебаний, пропускаемых каналом связи без значительного ослабления;
  • динамический диапазон D K , который можно представить как

зависит от чувствительности приемника Р тш и допустимых нагрузок Ртах аппаратуры канала связи;

емкость канала связи V K - произведение вышеупомянутых величин:

Если объем сигнала (5.8) превышает емкость канала связи, то такой сигнал не может быть передан без искажений (без потери информации).

Общее условие согласования сигнала с каналом передачи информации определяется соотношением

Это соотношение выражает необходимое, но не достаточное условие согласования сигнала с каналом. Достаточным является условие согласования по всем паоаметоам:

Если при выполнении условия (5.19) не обеспечивается часть условий (5.20), то можно добиться согласования трансформацией сигнала при сохранении его объема. Например, если отсутствует согласование сигнала с каналом по частоте, т.е. Afs » Д/ к, то согласование достигается записью сигнала на магнитофон при одной скорости движения ленты, а воспроизведением его при передаче - с меньшей скоростью в п раз. В результате этого длительность сигнала T s увеличивается в п раз и в и раз уменьшается ширина его спектра, при этом объем сигнала не изменяется;

количество информации 1{Х, Y) - означает количество переданной информации, содержащейся в сигнале источника Y, о состоянии объекта X и определяется количеством снятой в результате приема сигнала неопределенности, т.е. разностью априорной (до принятия сигнала) и апостериорной (после принятия сигнала) энтропий:

Отсюда вытекают следующие свойства количества информации:

  • количество информации измеряется в тех же единицах, что и энтропия; чаше всего в битах;
  • количество информации всегда неотрицательно: I(X,Y)> 0;
  • никакое преобразование сигнала не увеличит содержащейся в нем информации;
  • количество информации I(X, Y) о каком-либо источнике X, содержащейся в сигнале У, не больше энтропии этого источника: 1{Х Y) Н(Х)
  • количество информации о самом себе, содержащейся в источнике X, равно его энтропии: I(X, Y) = Н(Х).

В частном случае, когда т возможных состояний источника равновероятны и независимы друг от друга, каждое состояние источника несет информацию I(X, X) = log„ т, а последовательность, состоящая из п состояний (например, телеграмма длиной в п знаков, составленная из т равновероятных символов), несет информацию I(X, X) = =/jlog a т = loga т". В данном случае количество информации, содержащейся в источнике информации, определяется логарифмом числа возможных последовательностей состояний источника (числа возможных равновероятных событий), из которых осуществляется выбор при получении информации.

Количество информации при неполной достоверности дискретных сообщений равно разности безусловной энтропии Н(Х), характеризующей начальную неопределенность сообщения, и условной энтропии, характеризующей остаточную неопределенность сообщения:

где 1(Х, У) - количество информации, содержащейся во всей совокупности принятых сообщений X, относительно всей совокупности переданных сообщений У;

где р(у) - априорная вероятность;

где р(У/,х ,) - условная вероятность, характеризующая неопределенность в сообщении х, относительно переданного сообщения у,.

Вероятность совместного появления событий у , и х„ равную р(у„ х,) , можно записать как

Вероятность равна априорной вероятности появления сообщения y h умноженной на условную (апостериорную) вероятность появления сообщения у, при условии, что принято сообщение х,.

Приведем пример передачи сообщения о состоянии выхода источника напряжения, принимающего с равной вероятностью значения напряжения 1...10 В. В этом случае сообщение несет большую информацию. Нетрудно заметить, что чем меньше вероятность события, тем большее количество информации содержится в сообщении об этом событии. Например, сообщение о том, что в июле будут заморозки, содержит много информации, так как такое событие редко и его вероятность очень мала.

Количество информации имеет выражение

Несмотря на совпадение формул, количества информации и энтропии, количество информации определяется после получения сообщения.

Единицы измерения количества информации и энтропии зависят от выбора основания логарифма: при использовании десятичных логарифмов - дит, натуральных - нит, двоичных - бит.

К основным характеристикам сигнала связи относятся также следующие:

скорость переданы информации - среднее количество информации, передаваемое по каналу связи в единицу времени. В общем случае скорость передачи зависит от длительности передаваемого сообщения Т. При достаточно длинных сообщениях скорость передачи остается постоянной. Скорость передачи информации имеет выражение

где /(Z, Y) - количество информации, передаваемое за время Т работы канала;

пропускная способность канала (С) - максимальная теоретически допустимая для данного канала скорость передачи информации:

Скорость ввода информации в канал не должна превышать пропускную способность канала, иначе информация будет утеряна. Аналитически скорость ввода информации выражается как

где 1{Х) - среднее количество информации на входе канала;

Т - длительность сообщения.

Одним из основных вопросов теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех, действующих в нем;

  • амплитудно-частотная характеристика (АЧХ). Для определения характеристик канала связи применяется анализ его реакции на некоторое эталонное воздействие. Чаще всего в качестве эталона используются синусоидальные сигналы разных частот. АЧХ показывает, как изменяется амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех частот передаваемого сигнала;
  • полоса пропускания - диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заданный предел (для мощности 0,5). Эта полоса частот определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Ширина полосы пропускания влияет на максимально возможную скорость передачи информации по линии связи;
  • затухание канала связи (L ) - определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии связи сигнала определенной частоты. Затухание L обычно измеряется в децибелах (дБ) и вычисляется по формуле

где Р„ых - мощность сигнала на выходе линии;

Р вх - мощность сигнала на входе линии;

достоверность передачи данных - характеризует вероятность искажения для каждого передаваемого бита данных. Показателем достоверности является вероятность ошибочного приема информационного символа - Р ош. Величина Р ош для каналов связи без дополнительных средств защиты от ошибок составляет, как правило, 10 -4 ...10 -6 . В волоконно-оптических линиях связи Р ош составляет 10 -9 . Это значит, что при Р ош = 10 -4 в среднем из 10 000 битов искажается значение одного бита. Искажения битов происходят как из-за наличия помех на линии, так и из-за искажений формы сигнала, ограниченной полосой пропускания линии. Для повышения достоверности передаваемых данных необходимо повышать степень помехозащищенности линий, а также использовать широкополосные линии связи.

КАНАЛЫ СВЯЗИ


1. Классификация и характеристики канала связи

Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к. , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3. Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X), (2)

где: I (Y, X) – взаимная информация, т.е. количество информации, содержащееся в Y относительно X; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x).

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .


Характеристики

Используют следующие характеристики канала

Помехозащищённость

Помехозащищённость . Где - минимальное отношение сигнал/шум ;

Объём канала

Объём канала определяется по формуле: ,

где - время, в течение которого канал занят передаваемым сигналом;

Для передачи сигнала по каналу без искажений объём канала должен быть больше либо равен объёму сигнала , т.е. . Простейший случай вписывания объёма сигнала в объём канала - это достижение выполнения неравенств , > и . Тем не менее, может выполняться и в других случаях, что даёт возможность добиться требуемых характеристик канала изменением других параметров. Например, с уменьшением диапазона частот можно увеличить полосу пропускания.

Классификация

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные , акустические , оптические , инфракрасные и радиоканалы.

Каналы связи также классифицируют на

  • непрерывные (на входе и выходе канала - непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала - дискретные сигналы),
  • непрерывно-дискретные (на входе канала - непрерывные сигналы, а на выходе - дискретные сигналы),
  • дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе - непрерывные сигналы).

Каналы могут быть как линейными и нелинейными, временными и пространственно-временными . Возможна классификация каналов связи по диапазону частот.

Модели канала связи

Канал связи описывается математической моделью , задание которой сводится к определению математических моделей выходного и входного и , а также установлению связи между ними, характеризующейся оператором , т.е.

.

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал является детерминированным, т.е.

где γ – константа, определяющая коэффициент передачи, τ – постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что является случайной величиной . Например, если входной сигнал является узкополосным, то сигнал на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

,

где учтено, что входной сигнал может быть представлен в виде:

,

где - преобразование Гильберта , - случайная фаза, распределение которой считается обычно равномерным на интервале .

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, т.е. например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.

Модели дискретных каналов связи

Для задания модели дискретного канала необходимо определить множество входных и выходных кодовых символов, а также множество условных вероятностей выходных символов при заданных входных .

Модели дискретно-непрерывных каналов связи

Также существуют модели дискретно-непрерывных каналов связи

См. также

Примечания

Литература

  • Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В., Теория электрической связи / Под ред. Д. Д. Кловского. - Учебник для ВУЗов. - М .: Радио и связь, 1999. - 432 с. -

Характеристика каналов связи затруднительна. Куда отнести возможность определённого чиновника получить информацию? Искусно манипулируя связями, делец покупает выгодно товар. Сарафанное (народное) радио быстро разносит дурные вести, часто сплетни. Ещё Высоцкий был обманут слухами о скором запрете… Используя свои каналы экстрасенсы исцеляют, доводят любопытную информацию массам. Иногда безбожно врут. Мозг сегодня управляет компьютерами, японцы учатся читать мысли, куда отнести новый канал?

Классификация

Сегодня вся информация распространяется посредством колебаний – единственный способ существования материи, воспринимаемый человеком, приборами. Тесла считал мироздание сотканным из вибраций. Сложно ошибиться, назвав каналы связи колебательными. Классификация тесно касается исследований гармонических процессов. Фурье показал – волна любой формы представима суммой элементарных колебаний.

По природе волн

Напрашивается первая классификация:

Мысли также могут быть периодичными. Установлением природы возникающих сигналов сегодня занимается наука. Приведённые выше примеры составляют малую толику достижений человеческой цивилизации. Проявив минимум умственного напряжения, читатели поймут: электромагнитные, механические волны распространяются повсеместно. Постепенно угасая. Электромагнитным обычно удаётся проникнуть дальше. Естественным ограничителем механических выступает окружающий планеты вакуум.

Электромагнитное излучение принято классифицировать согласно типу модуляции несущей:

  1. Амплитудная.
  2. Частотная.
  3. Фазовая.
  4. Однополосная.
  5. Кодово-импульсная.
  6. Манипуляция:
  • Частоты.
  • Фазы.
  • Амплитуды.

По форме волн

Человек изначально пытался использовать электричество. Задача передачи информации требовала менять форму сигналов:

  1. Аналоговые, изменяющиеся плавно.
  2. Импульсные, отличающиеся короткой длительностью.
  3. Дискретные искусственно разорваны. Цифровой сигнал отличается нормированием уровней символов 0, 1.

Требования минимизации стоимости, энергозатрат постоянно рождают методики улучшения качества. Сегодня высшим достижением человеческой мысли считают цифровой сигнал, ставший отдельной отраслью сегмента передачи информации. Сказанное позволяет классифицировать каналы:

  1. Шифрованный – открытый.
  2. Кодированный (например, псевдошумовым сигналом) – некодированный.
  3. Широкополосный – узкополосный.
  4. Дуплексный – односторонний.
  5. Мультиплексный – без сжатия.
  6. Скоростной – обычный.
  7. Восходящий – нисходящий.
  8. Широковещательный – индивидуальный.
  9. Прямой – обратный (возвратный).

Вдобавок сетевые протоколы образуют иерархию OSI, каждый уровень можно представить каналом. Возможны другие критерии разбиения.

По корректирующему действию

Каналы изменяют проходящую информацию. Иногда намеренно:

  1. Линейные. Исходный сигнал легко восстановить, зная характеристики канала.
  2. Нелинейные. Часть информации безвозвратно теряется.
  3. Стохастические. Помехи реальных каналов редко поддаются предсказанию, даже статистическими методами.

По среде распространения

Подраздел классификации касается электромагнитной энергии:

  1. Проводные.
  2. Беспроводные.

Принцип действия

Информационные данные проходят путь меж локациями, преодолевая среду. Траекторию принято называть каналом связи. Современная техника пользуется последним типом классификации, рассматривая методы:

  1. Проводные (витая пара, кабель, оптическое волокно, медный провод).
  2. Беспроводные (спутники, радио, тепловое излучение, свет).

Материалом проводных сред стала преимущественно медь ввиду наилучшего сочетания цена/сопротивление. Стекло, полимеры обещают стать достойной заменой: факт, отмеченный экспертами середины 80-х (ХХ века). В информатике рассматривают понятие канала намного шире, включая сюда устройства хранения, самописцы, накопители, плёнку.

Модуляция

Изначально форма сигналов была максимально простой, чаще дискретной (азбука Морзе, код Шиллинга, визуальные знаки семафоров). Исследователи быстро осознали неэффективность элементарных приёмов. Уже Попов догадался применять амплитудную модуляцию несущей. Частотная рождена Эдвином Армстронгом (30-е годы). Инженеры Дженерал Электрик убедительно показали отличную устойчивость приёма вещания в условиях вспышек молний.

Цифровая эра

Вторая мировая война принесла миру более изощрённые варианты, включая кодирование псевдошумовыми сигналами, частотную манипуляцию. Предпринятые меры позволили сильно снизить спектральную плотность сигнала. Засечь передачу стало невероятно сложно, расшифровать – практически невозможно. Достижения военных лет развивались следующие несколько десятилетий. Ныне господствуют цифровые технологии, завтрашние шаги капризной истории сложно предсказать.

Сети

Основные современные каналы касаются непосредственно сегмента сетей, то есть линий, объединяющих активно взаимодействующие электронные объекты: компьютеры, телефоны, модемы. Ранее создания ARPANET обменом информации заведовал человек. Бурный рост сетевых технологий сделал возможным создание глобальных конформаций: интернет, услуги сотовых операторов. Международное взаимодействие сделало возможным тотальная стандартизация протоколов. В частности, первоначально (RFC 733) интернет получил определение сети, пользующейся стеком TCP/IP. Сегодня понятие стало намного шире, подразумевая планетарную систему взаимосвязанных хостов, несущих программное обеспечение HTTP-серверов.

Персональные компьютеры

Отдельной строкой выступают шины персональных компьютеров. Эре зарождения многоядерных процессоров предшествовали такие сегодня малознакомые аббревиатуры, как PCI, ISA. Своему рождению Фидонет обязан карте расширения S-100. Неправильно – забывать исторические предпосылки. Пример – развал Фидонета, брошенного собственным разработчиком, обосновавшим ранее экономическую целесообразность применения телефонных линий. Ушёл создатель – развалилась система, лишённая опоры в виде уместности технологии, соответствия растущим требованиям, взвинченным конкурирующими методами интернета. Технический уровень юзеров являлся недостаточным, был бессилен продлить агонию умирающей концепции.

Отсутствие информационной поддержки

Западные телекоммуникационные средства образуют совокупность экономически обоснованных типов передачи информации. Не существует отечественных эквивалентов терминов, переданных англоязычным доменом паутины. По телекоммуникационным технологиям, параметрам приходится брать зарубежную справку. Отсутствие информационной поддержки назовём очередным слабым звеном, мешающим развитию индустрии.

Модели каналов

Физическую среду принято моделировать. Исследователи пытаются предсказать результат будущих действий, полагая минимизировать затраты, увеличить пользу. Часто толчком проведения работ становятся экстремальные ситуации, войны, революции. Первую работу, касающуюся реальных каналов передачи информации, снабжённых моделями шумов, помех выпустил (1948) Клод Шеннон. Учёный рассмотрел движения дискретных сигналов, предложил методики оптимизации.

Математики неустанно разрабатывают модели интерференции, рефракции, отражения, шумов, затухания, резонанса. Например, разработчики мобильной связи внедряют аддитивную помеху. Точные методики расчёта отсутствуют. Модель канала учитывает сферу применения, преследует различные цели. Бывают потребности, искомые величины следующие:

  1. Оценка полосы пропускания.
  2. Вычисление битрейта.
  3. Коэффициент использования канала.
  4. Спектральная плотность сигнала.
  5. Уровень дрожаний.
  6. Процент ошибочно переданных битов.
  7. Оценка отношения сигнал/шум.
  8. Задержка линии.

Сотовые вышки делят канал меж фиксированным набором абонентов. Зачастую сигнал подвергается сильной интерференции. Сложный канал представляют суммой взаимодействий типа «точка-точка». Принято выделять группы подходящих моделей, описывающих соединение, предназначать каждой области стандартный набор методик «для сдачи отчётности».

Цифровые

Дискретные каналы проще моделировать. Сообщение представляется цифровым сигналом выбранного слоя протокола (иерархии OSI). Часто физический канал заменяют упрощёнными представлениями:

  • Кадр.
  • Пакет.
  • Датаграмма.

Поведение более сложных структур проще отследить, подсчитывая производительность, скорость, вероятность ошибок. Примеры:

  • Симметричный цифровой канал – простейший пример передачи битов, учитывающий влияние шумов.
  • Ошибка пакета битов (модель Гильберта – Эллиота). Описывает случай обязательного наличия неправильно принятых первого, последнего символов при длине отрезка выборки выше некоторого значения m, именуемого защитной полосой. «Неудачные» участки обычно разделены сравнительно длинными (превышают m) областями уверенного приёма.
  • Стёртый бит. Модель введена Петером Элиасом (Массачусетский технологический институт, 1955), описывает случай системы, где периодически сигнал пропадает. Вводится определённая вероятность «стирания». Кажущаяся простота обманчива, широкий круг реальных проблем решается рядом допущений указанным путём.
  • Стёртый пакет. Временами пропадает кусок кода.
  • Произвольно меняющийся канал имитирует реальные непредсказуемые условия. Эксперты противопоставляют методику симметричной цифровой, предложенной Шенноном.

Аналоговые

Сами модели могут быть:

  1. Линейными – нелинейными.
  2. Непрерывными – дискретными.
  3. Постоянной – динамической вероятности.
  4. Узкополосные – широкополосные.
  5. Инвариантные – переменные во времени.
  6. Действительные (реальные) – комплексные.

  1. Шумовая модель:
    • Аддитивная (белый Гауссовский шум) – линейная непрерывная постоянная.
    • Фазовое дрожание.
  2. Интерференционная система: перекрёстные, межсимвольные помехи.
  3. Искажения – нелинейные каналы.
  4. Имитация амплитудно-частотной характеристики.
  5. Групповая (фазовая) задержка.
  6. Моделирование условий физического канала.
  7. Расчёт распространения радиоволн.
    • Затухание мощности, вызванное ростом дальности.
    • Замирания: Рэлеевские, Райсовские, частотно-избирательные, теневые.
    • Доплеровский сдвиг, дополненный замираниями.
    • Трассировка лучей.
    • Моделирование сотовой связи.

Сотовые

Касаются подвижных абонентов: постоянно меняются скорость, ускорение, координаты. Моделирование беспроводных децентрализованных самоорганизующихся систем требует учёта специфических условий: шаблона трафика, особенностей регламента связи, поведения подписчиков.

  • Широковещательный вариант часто называют типом «точка-многоточие». Единственный передатчик посылает несколько сообщений. Удалённость узлов неодинакова. Представима большая часть беспроводных каналов, исключая радиолюбительскую, двухстороннюю связь. Отлично вписывается нисходящая ветвь трафика сотовых сетей, в особенности при отсутствии помех соседней вышки.
  • Множественный доступ предусматривает параллельную отправку сообщений несколькими передатчиками. Число приёмников варьируется. Существующая схема доступа к ресурсам дополняется методами контроля среды, включая схемы мультиплексирования. Приемлемо описывает восходящую ветвь трафика мобильных сетей.
  • Релейный канал дополняет передатчик взаимосвязанной системой репитеров. Модель отлично описывает стандарт LTE.
  • Интерференционный канал предусматривает наличие взаимных помех двух базовых станций. Помимо перекрёстных образуются канальные. Концепция прямо намекает на сотовые ячейки мобильных операторов. Ситуация усугубляется отсутствием ортогональных методик кодирования.
  • Индивидуальная передача описывает поведение мобильного телефона, получившего выделенный ресурс вышки.
  • Широковещательная схема использовалась пейджерами. Система Хамелеон выступает неплохим примером.
  • Групповое вещание описывает случай передачи сообщения фиксированной группе абонентов. Тесно касается стандарта LTE.

Для того чтобы передавать различную информацию, изначально должна быть создана среда ее распространения, которая представляет собой совокупность линий, или же каналов передачи данных со специализированным приемо-передающим оборудованием. Линии, или же каналы связи, представляют собой связующее звено в любой современной системе передачи данных, и с точки зрения организации подразделяются на два основных типа - это линии и каналы.

Линия связи представляет собой множество кабелей или же проводов, при помощи которых объединяются пункты связи между собой, а абоненты объединяются с ближайшими узлами. При этом каналы связи могут быть созданы самым разным образом в зависимости от особенностей определенного объекта и схемы.

Какими они могут быть?

Они могут представлять собой физические проводные каналы, которые основываются на использовании специализированных кабелей, а также могут быть волновыми. Волновые каналы связи формируются для организации в определенной среде всевозможных видов радиосвязи с использованием антенн, а также выделенной полосы частот. При этом как оптические, так и электрические каналы связи также подразделяются на два основных типа - это проводные и беспроводные. В связи с этим оптический и электрический сигнал может передаваться через провода, эфир, а также множество других способов.

В телефонной сети после того как будет набран номер, канал образуется на то время, пока будет присутствовать соединение, к примеру, между двумя абонентами, а также пока будет поддерживаться сеанс голосовой связи. Проводные каналы связи формируются посредством использования специализированного оборудования уплотнения, при помощи которого можно в течение длительного или же короткого времени передавать через линии связи информацию, которая подается из огромнейшего количества различных источников. Такие линии включают в себя одну или же одновременно несколько пар кабелей и предоставляют возможность передачи данных на достаточно большое расстояние. Вне зависимости от того, какие виды каналов связи рассматриваются, в радиосвязи они представляют собой среду передачи данных, которая организуется для какого-то определенного или же одновременно нескольких сеансов связи. Если речь идет именно о нескольких сеансах, то в таком случае может применяться так называемое частотное распределение.

Какие есть виды?

Точно так же, как и в современных средствах связи, существуют различные виды каналов связи:

  • Цифровые.
  • Аналоговые.
  • Аналогово-цифровые.

Цифровые

Данный вариант является на порядок более дорогостоящим по сравнению с аналоговыми. При помощи таких каналов достигается предельно высокое качество транслирования данных, а также появляется возможность внедрения различных механизмов, с помощью которых достигается абсолютная целостность каналов, высокая степень защищенности информации, а также использование целого ряда других сервисов. Для того чтобы обеспечить передачу аналоговой информации через технические каналы связи цифрового типа, эта информация первоначально преобразуется в цифровую.

В конце 80-х годов прошлого века появилась специализированная цифровая сеть с интеграцией услуг, более известная сегодня многим как ISDN. Предполагается, что такая сеть с течением времени сможет превратиться в глобальную цифровую магистраль, которая обеспечивает соединение офисных и домашних компьютеров, обеспечивая им достаточно большую скорость транслирования данных. Основные каналы связи данного типа могут быть:

  • Факс.
  • Телефон.
  • Устройства передачи данных.
  • Специализированное оборудование для проведения телеконференций.
  • И множество других.

В качестве конкуренции таким средствам могут выступать современные технологии, которые сегодня активно используются в сетях кабельного телевидения.

Другие разновидности

В зависимости от того, какая обеспечивается скорость передачи каналов связи, они подразделяются на:

  • Низкоскоростные. В данную категорию входят всевозможные телеграфные линии, которые отличаются чрезвычайно низкой (почти отсутствующей по нынешним меркам) скоростью передачи данных, которая достигает максимум 200 бит/с.
  • Среднескоростные. Здесь присутствуют аналоговые телефонные линии, обеспечивающие скорость передачи до 56000 бит/с.
  • Высокоскоростные или же, как их еще называют, широкополосные. Передача данных по каналам связи данного типа осуществляется на скорости более 56000 бит/с.

В зависимости от того, какие предусматриваются возможности организации направлений передачи данных, каналы связи могут подразделяться на следующие типы:

  • Симплексные. Организация каналов связи данного типа обеспечивает возможность транслирования данных только в каком-то определенном направлении.
  • Полудуплексные. Используя такие каналы, данные могут передаваться как в прямом, так и в обратном направлениях.
  • Дуплексные или же полнодуплексные. Используя такие каналы обратной связи, данные могут одновременно транслироваться в прямом и обратном направлениях.

Проводные

Проводные каналы связи включают в себя массу параллельных или же скрученных медных проводов, волоконно-оптических линий связи, а также специализированных коаксиальных кабелей. Если рассматривать, какие каналы связи используют кабеля, стоит выделить несколько основных:

  • Витая пара. Обеспечивает возможность передачи информации на скорости до 1 Мбит/с.
  • Коаксиальные кабели. К этой группе относятся кабели формата TV, включая как тонкий, так и толстый. В данном случае скорость передачи данных уже достигает 15 Мбит/с.
  • Оптоволоконные кабели. Наиболее современный и производительный вариант. Каналы связи передачи информации данного типа предусматривают скорость около 400 Мбит/с, что значительно превышает все остальные технологии.

Витая пара

Представляет собой изолированные проводники, которые между собой попарно свиваются для того, чтобы значительно снизить наводки между парами и проводниками. Стоит отметить, что на сегодняшний день существует семь категорий витых пар:

  • Первая и вторая применяются для того, чтобы обеспечить низкоскоростную передачу данных, причем первая представляет собой стандартный, хорошо известный всем телефонный провод.
  • Третья, четвертая и пятая категории используются для обеспечения скоростей передачи до 16, 25 и 155 Мбит/с, при этом разные категории предусматривают различную частоту.
  • Шестая и седьмая категории являются наиболее производительными. Речь идет о возможности передачи данных на скорости до 100 Гбит/с, что представляет собой самые производительные характеристики каналов связи.

Наиболее распространенной на сегодняшний день является третья категория. Ориентируясь на различные перспективные решения, касающиеся необходимости постоянно развивать пропускную способность сети, наиболее оптимальным будет использовать сети связи (каналы связи) пятой категории, которые обеспечивают скорость транслирования данных через стандартные телефонные линии.

Коаксиальный кабель

Специализированный медный проводник заключается внутрь цилиндрической экранирующей защитной оболочки, которая вьется из достаточно тонких жилок, а также является полностью изолированной от проводника при помощи диэлектрика. От стандартного телевизионного кабеля такой отличается тем, что в нем присутствует волновое сопротивление. Через такие информационные каналы связи данные могут передаваться на скорости до 300 Мбит/с.

Данный формат кабелей подразделяется на тонкий, который имеет толщину 5 мм, а также толстый - 10 мм. В современных ЛВС зачастую принято использовать тонкий кабель, так как он отличается предельной простотой в прокладывании и монтаже. Предельно высокая стоимость при непростой прокладке достаточно сильно ограничивают возможности использования таких кабелей в современных сетях передачи информации.

Сети кабельного телевидения

Такие сети основываются на применении специализированного коаксиального кабеля, аналоговый сигнал через который может транслироваться на расстояние до нескольких десятков километров. Типичная сеть кабельного телевидения отличается древовидной структурой, в которой основной узел получает сигналы со специализированного спутника или же через ВОЛС. На сегодняшний день активно используются такие сети, в которых используется волоконно-оптический кабель, при помощи которого обеспечивается возможность обслуживания больших территорий, а также транслирование более объемных данных, сохраняя при этом предельно высокое качество сигналов при отсутствии повторителей.

При симметричной архитектуре обратный и прямой сигналы транслируются при помощи единственного кабеля в разных диапазонах частот, и при этом с разными скоростями. Соответственно, обратный сигнал медленнее прямого. В любом случае, используя такие сети, можно обеспечить скорость передачи данных в несколько сотен раз больше по сравнению со стандартными телефонными линиями, в связи с чем последние уже давным-давно перестали использовать.

В организациях, в которых устанавливаются собственные кабельные сети, наиболее часто используются симметричные схемы, так как в данном случае как прямая, так и обратная передача данных осуществляется на одной скорости, которая составляет приблизительно 10 Мбит/с.

Особенности использования проводов

Количество проводов, которые могут использоваться для объединения домашних компьютеров и различной электроники, увеличивается с каждым годом. Согласно статистике, полученной в процессе исследований профессиональными специалистами, в 150-метровой квартире прокладывается приблизительно 3 км различных кабелей.

В 90-е годы прошлого века британская компания UnitedUtilities предложила довольно интересное решение данной проблемы при помощи собственной разработки под названием DigitalPowerLine, более известной сегодня по сокращению DPL. Компания предложила использовать стандартные силовые электросети в качестве среды для обеспечения высокоскоростного транслирования данных, осуществляя передачу пакетов информации или же голоса через обыкновенные электрические сети, напряжение которых составляло 120 или 220 В.

Наиболее успешной с этой точки зрения является израильская компания под названием Main.net, которая первой выпустила технологию PLC (PowerlineCommunications). При помощи данной технологии передача голоса или же данных осуществлялась со скоростью до 10 Мбит/с, при этом поток информации распределялся на несколько низкоскоростных, которые передавались на отдельных частотах, и в конечном итоге вновь объединялись в единый сигнал.

Использование технологии PLC на сегодняшний день является актуальным только в условиях транслирования данных на небольшой скорости, в связи с чем используется в домашней автоматике, различных бытовых устройствах и другом оборудовании. При помощи такой технологии достигается возможность выхода в интернет на скорости около 1 Мбит/с для тех приложений, которым требуется высокая скорость соединения.

При небольшом расстоянии между зданием и промежуточной приемопередающей точкой, которой служит трансформаторная подстанция, скорость транслирования данных может достигать 4.5 Мбит/с. Использование данной технологии активно осуществляется при формировании локальной сети в каком-нибудь жилом доме или же небольшом офисе, так как минимальная скорость передачи обеспечивает возможность покрытия расстояния до 300 метров. При помощи этой технологии обеспечивается возможность реализации различных услуг, связанных с дистанционным мониторингом, охраной объектов, а также управлением режимами объектов и их ресурсами, что входит в элементы интеллектуального дома.

Оптоволоконный кабель

Данный кабель составляется из специализированного кварцевого сердечника, диаметр которого составляет всего лишь 10 микронов. Этот сердечник окружается уникальной отражающей защитной оболочкой, внешний диаметр которой составляет около 200 микрон. Передача данных осуществляется посредством трансформации электрических сигналов в световые, используя, к примеру, какой-нибудь светодиод. Кодирование данных осуществляется посредством изменения интенсивности светового потока.

Осуществляя передачу данных, луч, который отражается от стенок волокна, в котором итоге поступает на приемный конец, имея при этом минимальное затухание. При помощи такого кабеля достигается предельно высокая степень защиты от воздействия со стороны каких-либо внешних электромагнитных полей, а также достигается достаточно высокая скорость передачи данных, которая может достигать 1000 Мбит/с.

Используя оптоволоконный кабель, есть возможность одновременной организации работы сразу нескольких сотен тысяч телефонных, видеотелефонных, а также телевизионных каналов. Если говорить о других преимуществах, присущих таким кабелям, стоит отметить следующие:

  • Предельно высокая сложность несанкционированного подключения.
  • Максимально высокая степень защиты от каких-либо возгораний.
  • Достаточно высокая скорость передачи данных.

Однако если говорить о том, какие недостатки имеют такие системы, стоит выделить то, что они являются довольно дорогостоящими и обуславливают необходимость в трансформации световых лазеров в электрические и наоборот. Использование таких кабелей в преимущественном большинстве случаев осуществляется в процессе прокладки магистральных линий связи, а уникальные свойства кабеля сделали его еще и достаточно распространенным среди провайдеров, обеспечивающих организацию сети интернет.

Коммутация

Помимо всего прочего, каналы связи могут быть коммутируемыми или же некоммутируемыми. Первые создаются только на определенное время, пока нужно передавать данные, в то время как некоммутируемые выделяются абоненту на конкретный промежуток времени, и не имеют никакой зависимости от того, в течение какого времени осуществлялась передача данных.

WiMAX

Такие линии, в отличие от традиционных технологий радиодоступа, могут функционировать также на отраженном сигнале, который не находится в прямой видимости той или иной базовой станции. Мнение экспертов сегодня однозначно сходится в том, что такие мобильные сети раскрывают для пользователей огромные перспективы по сравнению с фиксированным WiMAX, который является предназначенным для корпоративных заказчиков. В этом случае информация может транслироваться на достаточно большое расстояние (до 50 км), при этом характеристики каналов связи данного типа включают в себя скорость до 70 Мбит/с.

Спутниковые

Спутниковые системы предусматривают использование специализированных антенн СВЧ-диапазона частот, которые используются для приема радиосигналов от каких-либо наземных станций, и потом ретранслируют полученные сигналы обратно на другие наземные станции. Стоит отметить, что такие сети предусматривают использование трех основных видов спутников, располагающихся на средних или низких, а также геостационарных орбитах. В преимущественном большинстве случаев принято запускать спутники группами, так как, разносясь друг от друга, с их помощью обеспечивается охват всей поверхности нашей планеты.