Возведение матрицы в квадрат онлайн. Возведение матрицы в степень. Вычисление результатов выражений с матрицами. Как возвести матрицу в куб и более высокие степени

Следует заметить, что данной операции поддаются только квадратные матрицы. Равное число строк и столбцов – обязательное условие для возведения матрицы в степень. В ходе вычисления матрица будет помножена сама на себя требуемое количество раз.

Данный онлайн калькулятор предназначен для выполнения операции возведения матрицы в степень. Благодаря его использованию вы не только быстро справитесь с данной задачей, но и получите наглядное и развёрнутое представление о самом ходе вычисления. Это поможет лучше закрепить материал, полученный в теории. Увидев перед собой детальный алгоритм расчётов, вы лучше поймёте все его тонкости и впоследствии сможете не допускать ошибок в ручном вычислении. Кроме того, никогда не будет лишним перепроверить свои расчёты, и это тоже лучше всего осуществлять здесь.

Для того, чтобы возвести матрицу в степень онлайн, понадобится ряд простых действий. Первым делом укажите размер матрицы, нажав на иконки «+» или «-» слева от неё. Затем в поле матрицы введите числа. Также нужно указать степень, в которую возводится матрица. А далее вам остаётся лишь кликнуть на кнопку: «Вычислить» в нижней части поля. Полученный результат будет достоверным и точным, если вы внимательно и правильно ввели все значения. Вместе с ним вам будет предоставлена детальная расшифровка решения.

К квадратным матрицам можно формально применять операцию возведения в степень n. Для этого п должно быть целым числом. Результат данной операции приведен в табл. 9.1. Ввести оператор возведения матрицы м в степень n можно точно так же, как и для скалярной величины: нажав кнопку Raise to Power (Возвести в степень) на панели Calculator (Калькулятор) или нажав клавишу . После появления местозаполнителя в него следует ввести значение степени n.

Таблица 9.1. Результаты возведения матрицы в степень

0 единичная матрица размерности матрицы M

1 сама матрица M

1 M -1 - матрица, обратная M

2,3,... MM, (MM)M, ...

2, -3, ... M -1 M -1 , (M -1 M -1)M -1 , ...

Некоторые примеры возведения матриц в степень приведены в листинге 9.15.

Листинг 9.15. Примеры возведения квадратной матрицы в целую степень

Векторизация массивов

Векторная алгебра Mathcad включает несколько необычный оператор, который называется оператором векторизации (vectorize operator). Этот оператор предназначен, как правило, для работы с массивами. Он позволяет провести однотипную операцию над всеми элементами массива (т. е. матрицы или вектора), упрощая тем самым программирование циклов. Например, иногда требуется умножить каждый элемент одного вектора на соответствующий элемент другого вектора. Непосредственно такой операции в Mathcad нет, но ее легко осуществить с помощью векторизации (листинг 9.16). Для этого:

· Введите векторное выражение, как показано во второй строчке листинга (обратите внимание, что в таком виде символ умножения обозначает оператор скалярного произведения векторов).

· Переместите курсор таким образом, чтобы линии ввода выделяли все выражение, которое требуется подвергнуть векторизации (рис. 9.3).

· Введите оператор векторизации, нажав кнопку Vectorize (Векторизация) на панели Matrix (Матрица) (рис. 9.3), или сочетанием клавиш +.

· Введите , чтобы получить результат.

Рис. 9.3. Оператор векторизации

Листинг 9.16. Использование векторизации для перемножения элементов вектора



Оператор векторизации можно использовать только с векторами и матрицами одинакового размера.

Большинство неспецифических функций Mathcad не требуют векторизации для проведения одной и той же операции над всеми элементами вектора. Например, аргументом тригонометрических функций по определению является скаляр. Если попытаться вычислить синус векторной величины, Mathcad осуществит векторизацию по умолчанию, вычислив синус каждого элемента и выдав в качестве результата соответствующий вектор. Пример показан в листинге 9.17.

Листинг 9.17. Векторизация необязательна для большинства функций Mathcad

Символьные операции с матрицами

Все матричные и векторные операторы, о которых шла речь выше, допустимо использовать в символьных вычислениях. Мощь символьных операций заключается в возможности проводить их не только над конкретными числами, но и над переменными. Несколько примеров приведены в листинге 9.18.

Листинг 9.18. Примеры символьных операций над векторами и матрицами

Смело используйте символьный процессор в качестве мощного математического справочника. Например, когда Вы хотите вспомнить какое-либо определение из области линейной алгебры (так, правила перемножения и обращения матриц показаны в первых строках листинга 9.18).

Матричные функции

Перечислим основные встроенные функции, предназначенные для облегчения работы с векторами и матрицами. Они нужны для создания матриц, слияния и выделения части матриц, получения основных свойств матриц и т.п.

Функции создания матриц

Самым наглядным способом создания матрицы или вектора является применение первой кнопки панели инструментов Matrix (Матрицы). Однако в большинстве случаев, в частности при программировании сложных проектов, удобнее бывает создавать массивы с помощью встроенных функций.

Определение элементов матрицы через функцию

· matrix(M,N,f) - создание матрицы размера M*N, каждый i, j элемент которой есть f(i, j) (листинг 9.19);

o M - количество строк;

o N - количество столбцов;

o f (i, j) - функция.

Листинг 9.19. Создание матрицы

Для создания матриц имеются еще две специфические функции, применяемые, в основном, для быстрого и эффектного представления каких-либо зависимостей в виде трехмерных графиков (типа поверхности или пространственной кривой). Все их аргументы, кроме первого (функции), необязательны. Рассмотрим первую из функций.

· СгеаtеSрасе(F(или f1, f2, f3), t0, t1, tgrid, fmap) - создание вложенного массива, представляющего х-, у- и z-координаты параметрической пространственной кривой, заданной функцией р;

      • F(t) - векторная функция из трех элементов, заданная параметрически относительно единственного аргумента t;
      • f1(t) ,f2(t), f3(t) - скалярные функции;
      • t0 - нижний предел t (по умолчанию -5);
      • t1 - верхний предел t (по умолчанию 5);
      • tgrid - число точек сетки по переменной t (по умолчанию 2о);
      • fmap - векторная функция от трех аргументов, задающая преобразование координат.

Рис. 9.4. Использование функции CreateSpace с разным набором параметров

Пример использования функции CreateSpace показан на рис. 9.4. Заметьте, для построения графика спирали не потребовалось никакого дополнительного кода, кроме определения параметрической зависимости в вектор-функции F.

Функция создания матрицы для графика трехмерной поверхности устроена совершенно аналогично, за тем исключением, что для определения поверхности требуется не одна, а две переменных. Пример ее использования иллюстрирует рис. 9.5.

Рис. 9.5. Использование функции CreateMesh с разным набором параметров

· CreateMesh(F(или g, или f1, f2, f3) , s0, s1, t0, t1, sgrid, tgrid, fmap) - создание вложенного массива, представляющего х-, у- и z-координаты параметрической поверхности, заданной функцией F;

      • F(s,t) - векторная функция из трех элементов, заданная параметрически относительно двух аргументов s и t;
      • g (s, t) - скалярная функция;
      • f1(s,t),f2(s,t),f3(s,t) - скалярные функции;
      • s0, t0 - нижние пределы аргументов s, t (по умолчанию -5);
      • s1, t1 - верхние пределы аргументов s, t (по умолчанию 5);
      • sgrid, tgrid - число точек сетки по переменным s и t (по умолчанию 20);
      • fmap - векторная функция из трех элементов от трех аргументов, задающая преобразование координат.

Примеры вложенных массивов, которые создаются функциями CreateMesh и CreateSpace, приведены в листинге 9.20. Каждая матрица из числа трех вложенных матриц, образующих массив, определяет х-, у- и z-координаты точек поверхности или кривой, соответственно.

Листинг 9.20. Результат действия функций CreateMesh и CreateSpace (рис. 9.4 - 9.5)

Создание матриц специального вида

В Mathcad легко создать матрицы определенного вида с помощью одной из встроенных функций. Примеры использования этих функций приведены в листинге 9.21.

· identity (N) - единичная матрица размера N*N;

· diag(v) - диагональная матрица, на диагонали которой находятся элементы вектора v;

· geninv(A) - создание матрицы, обратной (слева) матрице А;

· rref (A) - преобразование матрицы или вектора А в ступенчатый вид;

      • N - целое число;
      • v - вектор;
      • А - матрица из действительных чисел.

Размер N*M матрицы А для функции geninv должен быть таким, чтобы N>M.

Листинг 9.21. Создание матриц специального вида

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

Размерность матрицы 2 3 4 5 6 7 8 9 10

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы
  • Нахождение транспонированной матрицы A T .
  • Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  • Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  • Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  • Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  • Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  • Определение алгебраических дополнений.
  • Заполнение союзной (взаимной, присоединённой) матрицы C .
  • Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  • Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.
  • Пример №1 . Запишем матрицу в виде:


    Алгебраические дополнения.
    A 1,1 = (-1) 1+1
    -1 -2
    5 4

    ∆ 1,1 = (-1 4-5 (-2)) = 6
    A 1,2 = (-1) 1+2
    2 -2
    -2 4

    ∆ 1,2 = -(2 4-(-2 (-2))) = -4
    A 1,3 = (-1) 1+3
    2 -1
    -2 5

    ∆ 1,3 = (2 5-(-2 (-1))) = 8
    A 2,1 = (-1) 2+1
    2 3
    5 4

    ∆ 2,1 = -(2 4-5 3) = 7
    A 2,2 = (-1) 2+2
    -1 3
    -2 4

    ∆ 2,2 = (-1 4-(-2 3)) = 2
    A 2,3 = (-1) 2+3
    -1 2
    -2 5

    ∆ 2,3 = -(-1 5-(-2 2)) = 1
    A 3,1 = (-1) 3+1
    2 3
    -1 -2

    ∆ 3,1 = (2 (-2)-(-1 3)) = -1
    A 3,2 = (-1) 3+2
    -1 3
    2 -2

    ∆ 3,2 = -(-1 (-2)-2 3) = 4
    A 3,3 = (-1) 3+3
    -1 2
    2 -1

    ∆ 3,3 = (-1 (-1)-2 2) = -3
    Тогда обратную матрицу можно записать как:
    A -1 = 1 / 10
    6 -4 8
    7 2 1
    -1 4 -3

    A -1 =
    0,6 -0,4 0,8
    0,7 0,2 0,1
    -0,1 0,4 -0,3
    Другой алгоритм нахождения обратной матрицы Приведем другую схему нахождения обратной матрицы.
  • Находим определитель данной квадратной матрицы A .
  • Находим алгебраические дополнения ко всем элементам матрицы A .
  • Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  • Делим каждый элемент полученной матрицы на определитель матрицы A .
  • Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

    Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

    Как вставить математические формулы на сайт?

    Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

    Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

    Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

    Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

    Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

    Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

    Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

    Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.