Интересные факты и полезные советы. Быть или не быть лазерным сетям

Е. Н. Чепусов, С. Г. Шаронин

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется лазерная связь?

Лазерная связь в отличие от GSM связи позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство

Ethernet (10 Мбит/с)

Token Ring (416 Мбит/с)

E1 (2 Мбит/с)

Видеоизображение

Комбинация данных и речи

Высокоскоростная передача данных (34-155 Мбит/с)

Возможность модернизации

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1. Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2. Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3. Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4. Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5. Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость

Медный кабель

Оптоволокно

Радиоканал

Лазерный канал

от 3 до 7 тыс. дол. за 1 км

до 10 тыс. дол. за 1 км

от 7 до 100 тыс. дол. за комплект

12-22 тыс. дол. за комплект

Время на подготовку и выполнение монтажа

Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов

30 января на орбиту был запущен спутник Eutelsat 9B. Он стал первым спутником, оснащённым системой EDRS (Европейская система передачи данных). Желая узнать подробности о новой технологии, корреспондент Mediasat отправился в офис разработчика модуля EDRS – компании Tesat, которая расположена в небольшом немецком городке Бакнанг. Руководитель отдела лазерных технологий Матиас Моцигемба провёл для нас экскурсию по предприятию и рассказал о технологии лазерной связи, которая пока ещё мало известна в мире.

При поддержке Космического агентства Германии компания Tesat разработала Терминал лазерной связи (LCT), который обеспечивает поддержку передачи данных на высокой скорости между низкоорбитальными (LEO) и геостационарными (GEO) спутниками. Терминал делает возможной передачу данных на скорости 1,8 гбит/сек на расстояние до 45 000 километров. Эти LCT-терминалы и должны стать основой магистральных каналов передачи данных в системе EDRS, которая должна обеспечить передачу данных между LEO и GEO спутниками.

Матиас Моцигемба: «Теперь у нас есть возможность предоставления услуг высокого качества в режиме, приближённом к режиму реального времени. Это имеет огромное значение! LEO-спутник делает снимок и отправляет его на GEO-спутник, который, в свою очередь, отправляет его на землю в радиочастотном диапазоне. Лазерный луч отличное решение в вакууме, однако, в условиях атмосферы это не самый лучший выбор, поскольку облака могут создавать помехи. Для защиты телевизионного сигнала вы можете использовать высокие скорости передачи данных и защищённую от помех оптическую технологию в фидерной линии. Появление технологии лазерных коммуникаций можно сравнить с началом использования оптического волокна вместо медного».

Телепорт системы наблюдения за Землёй может быть иностранным сервисом, использующим наземные незащищённые линии.
Служба оптической передачи данных (с LEO на GEO и с GEO на наземную станцию передачи).
Наземная станция может располагаться в своей стране в зоне прямой видимости GEO-спутника.
S/C – суверенитет ваших информационных активов.

Необходимость разработки этой технологии была продиктована растущим спросом на ёмкости передачи данных для гражданских и военных спутников наблюдения, HALE миссий. Идея создания системы EDRS была выдвинута Еврокомиссией, которая уже занимается группировкой спутников Sentinel, программой Copernicus. Следующим шагом должно стать создание межспутниковых каналов связи. Компания Eutelsat предложила ёмкости для модуля связи на спутнике Eutelsat 9B. После семи лет разработки первого и второго поколения LCT в июле 2013 года была запущена система LCT на Alphasat. Система LCT на спутнике Sentinel-1A была успешно интегрирована в декабре 2013. В декабре 2014 года был запущен и введён в эксплуатацию спутник Sentinel 1A. В ноябре 2014 Европейское космическое агентство и Tesat провели совместную презентацию в прямом эфире, во время которой в режиме, приближённом к режиму реального времени было отправлено изображение с радара на спутнике Sentinel-1A через Alphasat на расстояние 41 700 километров на наземную станцию.

«Технически нет никакой разницы между оборудованием для лазерной связи, установленным на Alphаsat, и аналогичным оборудованием на Eutelsat 9B. Alphasat продемонстрировал технические возможности проекта, в то время как система EDRS на спутнике Eutelsat 9 B – это коммерческий сервис, предложенный Airbus Defense and Space. Обычно у спутника наблюдения за Землёй есть 10 минут для контакта с наземной станцией и 90 минут на оборот вокруг Земли. Это значит, что вы можете использовать космический актив лишь на 10%, и в случае чрезвычайной ситуации или стихийного бедствия слишком много времени уходит на ожидание контакта с наземной станцией наблюдения. Теперь же, во время наблюдений за морскими судами, к примеру, вы сможете обнаружить неполадку в течение 15 минут» , — говорит Матиас Моцигемба.

Ключевым элементом линейки продуктов является LCT-135 (телескоп с лучом диметром 135 мм) для межспутникового канала GEO/LEO. Как и в случае с предыдущей моделью, LCT-125, устройство объединяет в одном блоке все оптические, механические и электрические подмодули терминала, такие как система распределения электроэнергии, бортовой процессор, модули слежения и сбора данных, а также система обработки данных. Данные с AOCS-датчиков спутника с лёгкостью передаются на LCT через стандартный интерфейс – LIAU (Блок адаптации лазерного интерфейса).

Параметры LCT:

  • Радиус действия – 45 000 км.
  • Вес: 53 кг.
  • Скорость передачи данных (полный дуплекс):
    для EDRS – 1,8 гбит/сек, для других миссий – 5,65 гбит/сек.
  • Мощность передачи: 2,2 Вт
  • Максимальная потребляемая мощность: 160Вт
  • Габариты: 0.6 x 0.6 x 0.7 м.

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется связь

Лазерная связь позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство LOO OmniBeam 2000 OmniBeam 4000
Ethernet (10 Мбит/с) + + -
Token Ring (416 Мбит/с) + + -
E1 (2 Мбит/с) + + -
Видеоизображение - + -
Комбинация данных и речи - + -
Высокоскоростная передача данных (34-155 Мбит/с) - - +
Возможность модернизации - + +

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1.
Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2.
Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3.
Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4.
Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5.
Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость Медный кабель Оптоволокно Радиоканал Лазерный канал
от 3 до 7 тыс. дол. за 1 км до 10 тыс. дол. за 1 км от 7 до 100 тыс. дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка - несколько часов Подготовка работ 1-2 недели, установка - несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1,2 км
BER >1E-7 1E-10 1E-10...1E-9

Начнем со всем известного обычного медного кабеля. Некоторые его характеристики позволяют практически точно рассчитать параметры создаваемого канала связи. Для такого канала неважно, каково направление передачи и нахоятся ли объекты в прямой видимости, не нужно думать о влиянии осадков и многих других факторов. Однако качество и скорость передачи, обеспечиваемые этим кабелем, оставляют желать лучшего. Частота появления ошибочных битов (BER) составляет величину порядка 1Е-7 и выше, что значительно больше величины этого показателя у оптоволокна или беспроводной связи. Медные кабели относятся к низкоскоростным каналам связи, поэтому прежде чем прокладывать новые кабели, подумайте о том, стоит ли их использовать. Если кабель уже имеется, то вам стоит задуматься о том, как повысить его пропускную способность на основе технологии HDSL. Однако следует учитывать, что она может не обеспечить требуемого качества связи из-за неудовлетворительного состояния кабельных линий.

Оптоволоконные кабели имеют значительные преимущества перед медными. Высокие пропускная способность и качество передачи (BER

Сейчас широкое применение находит радиосвязь, особенно радиорелейные линии и радиомодемы. Им также присущ свой набор преимуществ и недостатков. Существующие технологии радиосвязи при создании канала для передачи данных обеспечат вам более высокие качество (BER

Лазерная связь - быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Без выполнения этих условий лазерная связь невозможна. Ее несомненными преимуществами являются:

  • "прозрачность" для большинства сетевых протоколов (Ethernet, Token Ring, Sonet/OC, ATM, FDDI и др.);
  • высокая скорость передачи данных (до 155 Мбит/с сегодня, до 1 Гбит/с у анонсированного производителями оборудования);
  • высокое качество связи с BER=1Е-10...1Е-9;
  • подведение сетевого трафика к лазерному приемопередатчику при помощи кабельных и/или оптоволоконных устройств сопряжения;
  • отсутствие необходимости получения разрешений на использование;
  • относительно низкая стоимость лазерного оборудования, по сравнению с радиосистемами.

Лазерные приемопередатчики, из-за низкой мощности их излучения, не представляют опасности для здоровья. Следует отметить, что хотя луч безопасен, птицы его видят и стараются уклониться, что существенно уменьшает вероятность сбоев. Если передаваемая информация доставляется к лазерному приемопередатчику и от него по стандартному многомодовому оптоволоконному кабелю, то гарантируется передача данных без радиоволнового и электромагнитного излучения. Это не только обеспечивает отсутствие воздействия на работающее рядом оборудование, но и делает невозможным несанкционированный доступ к информации (получить его можно, только подобравшись непосредственно к приемопередатчику).

У проводных систем передачи данных появился конкурент – лазер. По лазерному лучу можно передавать до 10 Гбит информации в секунду: в сетях радиосвязи такая скорость невозможна. Лазерная связь совершенно безвредна для человека и имеет множество других достоинств. Правда, лазерный луч не может пробиться сквозь туман.

У лазерной связи своя ниша – она применяется на коротких дистанциях в местах, где возникают сложности с прокладкой кабеля. Операторам лазерной связи не нужно получать разрешение на ввоз оборудования и на использование частот.

Свет в окошке

В Москве и Петербурге все офисные центры поделены между различными операторами связи. Если, к примеру, здание обслуживает «Совинтел», то «Комстару» провести линию в этот офисный комплекс крайне трудно (лишь в очень редких случаях одно здание обслуживают два оператора связи). При этом владельцы офисных комплексов, как правило, не разрешают ставить на крышах своих домов радиосистемы для связи с другими операторами. Лазерная связь помогает преодолеть эти сложности. В офисе можно установить беспроводной оптический аппарат, который направит луч через окно на ближайший ретранслятор «своего» оператора связи и будет по этому лучу передавать информацию. Это позволяет пользователям обходиться без дорогого сервиса, навязываемого арендодателем, и самостоятельно налаживать более удобную и дешевую связь. При смене офиса оборудование можно демонтировать и перевезти на новое место.

Лазер может решить и проблемы крупных предприятий. Установить связь между офисом и производственными площадками – дело хлопотное. В условиях плотной городской застройки проложить кабель по территории завода и прилегающих улиц очень трудно. Но даже если кабель проложен, это не значит, что все проблемы позади. Коммунальные службы то и дело вскрывают асфальт для ремонта городских коммуникаций, частенько при этом перерубая проложенные кабели. Подвесные же кабели часто становятся жертвой подъемных кранов и штормового ветра. Лазерному лучу экскаватор не страшен. Кроме того, световой луч невозможно украсть и сдать как цветной металлолом, поэтому лазерной связи неопасны воры, промышляющие выкапыванием кабелей из-под земли.

Да и подслушивание лазерных систем – дело очень сложное. Если на пути луча поставить несанкционированное приемное устройство, то связь мгновенно прервется. Разместить подслушивающие устройства рядом с приемником и передатчиком тоже нельзя: они будут видны невооруженным взглядом.

20 лет без научной переписки

Попытки построить беспроводную связь при помощи лазерного луча предпринимались в Москве еще в конце 1960-х. Передатчики были установлены в здании МГУ на Ленинских горах и в одном из домов на Зубовской площади, неподалеку от станции метро «Парк культуры». Установка размером с комнату передавала сигнал успешно, но только в ясную погоду. Специалисты решили, что зависимость от состояния атмосферы слишком высока. Связь при помощи инфракрасного луча была признана бесперспективным направлением, и исследования были свернуты на 20 лет. Эта пауза дорого обошлась отечественной науке. В конце 1980-х советские исследователи вернулись к теме, но довести свои испытания до коммерческих образцов не успели. За них это сделали западные конкуренты.

Системы передачи данных при помощи инфракрасного луча появились на мировом рынке в начале 1990-х. Одним из первопроходцев была канадская A.T.Schindler. Вслед за ней свои разработки вывели фирмы Jolt и SilCom. В конце 1990-х на Западе среди производителей оборудования для лазерной связи в лидеры выбилась PAV Data Systems, а пионерам SilCom и A.T.Schindler пришлось слегка потесниться. Кроме того, в области лазерной связи свои разработки имеют американо-германская Lightpointe Communications (бывш.Eagle Optoelectronics), американские Astroterra, LSA Photonics, Lucent Technologies.

Дождь и туман

Поначалу зарубежные системы обеспечивали передачу данных на дистанциях до 500 м и обслуживали локальные сети передачи данных. В конце 1990-х появились системы следующего поколения – более надежные и «дальнобойные», позволяющие обслуживать сети городского масштаба.

На расстоянии до 1600 м системы работают прекрасно. Однако при передаче данных на большее расстояние качество связи снижается. Кроме того, лазерные системы не освободились от метеозависимости. Самая страшная преграда для лазерной связи – туман.

В свою очередь, радиорелейные системы «падают» во время дождя. В этой связи разработчики предлагают строить высоконадежные каналы связи на основе двух линий, одна из которых передает информацию по радио, а другая – по лазерному лучу. Соответственно одна «падает» в дождь, а другая – в туман. «Если нужно получить канал высокой надежности на дистанции до 3 км, то это идеальный вариант», – утверждает Александр Клоков, технический директор представительства американской MicroMax , дистрибутора и интегратора беспроводных оптических систем.

Случаются и другие естественные преграды. Например, говорят, что одна из сотовых компаний до сих пор размышляет, как поступить с выросшим на пути лазерного луча деревом – то ли срубать его, то ли аппарат переставить…

Западные и российские производители не конкурируют друг с другом

Источник: MicroMax Computer Intelligence, Inc

Плюнь в колодец

Преимущества лазерного луча оценил «Транстелеком». У этой компании возникли трудности с «Ростелекомом» и местными «Электросвязями»: конкуренты, владеющие инфраструктурой связи, не подпускают «Транстелеком» к кабельным колодцам. В итоге «Транстелеком» махнул рукой на колодцы и собирается подключать корпоративных клиентов к своим магистралям посредством лазерного луча.

Кроме того, лазерным лучом как каналом передачи сигнала пользуются операторы сотовой связи. Они применяют лазер в тех местностях, где в радиоэфире множество помех – например, в аэропортах.

Заместитель технического директора компании «Соник Дуо» (сеть «МегаФон») Игорь Парфенов

рассказал «Ко», что в московской сети «МегаФон» работают более 10 оптических систем. Компания намерена в течение 2003 года следить за их работой и по результатам наблюдений принять решение о целесообразности массового использования этого оборудования. Пока претензий к работе техники у «Соник Дуо» нет.

В свою очередь, руководитель группы инсталляции радиорелейного оборудования «Вымпелкома» Георгий Павленко сообщил, что его компания использует лазерные установки исключительно для временной работы, пока не получено разрешение на установку радиорелейной аппаратуры. «На постоянной основе эти системы лучше использовать на расстоянии до 500 м. Помимо тумана помехой для них является солнечный свет, поэтому необходимо устанавливать специальные фильтры», – говорит Павленко.

В МТС корреспонденту «Ко» рассказали, что сейчас лазерные приборы обеспечивают связь на участках, суммарная длина которых не превышает 1% от общей протяженности сети. Скорее всего, лазерная связь не превысит этого порога. «Оптические сети хороши для построения микросетей, на использование лазера не требуется разрешения Госсвязьнадзора. Но, к сожалению, практика нашей компании показала, что лазер пока обеспечивает надежную связь на расстоянии не более 500 метров».

В России оборудование для беспроводной связи на основе инфракрасного луча производят НИИ прецизионного приборостроения, компания «Катарсис» из Санкт-Петербурга, Рязанский государственный приборный завод, компании «НТЦ» из Новосибирска и «Сцептор» (последняя создана на базе Московского энергетического института), а также Воронежский институт связи.

Никто из производителей, кроме «Катарсиса», не продвинулся дальше опытного производства. В России хорошие инженеры, которые создают правильную технику, но совершенно не умеют ее продавать. «Например, простейший разъем должен быть стандартным. А у отечественных аппаратов разъемы многоштырьковые. Это, конечно, хороший разъем, но он больше подходит для ракет, – рассказывает Александр Клоков. – Установка российских систем требует распайки кабеля на месте, но какой здравомыслящий оператор пошлет своих работников паять что-нибудь на крышу?»

Отечественные и зарубежные системы пока не конкурируют друг с другом, поскольку находятся в разных «весовых категориях» (см. таблицу). По мнению Александра Клокова, в 2002 году в России будет продано в общей сложности около 400 систем лазерной связи.

Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применяемую в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи, передающих не только телефонные, но и телевизионные и компьютерные сигналы.
Оптические системы связи делятся на открытые, где сигнал передается в атмосфере или космосе, и закрытые, то есть использующие световоды . Далее рассматриваются только открытые атмосферные линии связи.
Оптическая атмосферная система связи между двумя пунктами состоит из двух спаренных приемопередающих устройств, расположенных в пределах прямой видимости на обоих концах линии и направленных друг на друга. В передатчике находится генератор-лазер и модулятор его оптического излучения передаваемым сигналом. Модулированный лазерный луч коллимируется оптической системой и направляется в сторону приемника. В приемнике излучение фокусируется на фотоприемник, где производится его детектирование и выделение передаваемой информации. Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Кроме того, в атмосфере наблюдаются турбулентные явления, которые приводят к флуктуации показателя преломления среды, колебаниям луча и искажениям принимаемого сигнала. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней миРаспространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. При этом ни одно из этих явлений не проявляется в отдельности. По чисто качественным признакам указанные явления можно разделить на три основные группы: поглощение и рассеяние молекулами газов воздуха, ослабление на аэрозолях (пыль, дождь, снег, туман) и флуктуации излучения на турбулентностях атмосферы. Главными ограничителями дальности АЛС являются густой снег и густой туман, для которых аэрозольное ослабление максимально. На распространение лазерного луча сильное влияние оказывает также турбулентность атмосферы, то есть случайные пространственно-временные изменения показателя преломления, вызванные перемещением воздуха, флуктуациями его температуры и плотности. Поэтому световые волны, распространяющиеся в атмосфере, испытывают не только поглощение, но и флуктуации передаваемой мощности.
Турбулентность атмосферы приводит к искажениям волнового фронта и, следовательно, к колебаниям и уширению лазерного пучка и перераспределению энергии в его поперечном сечении. В плоскости приемной антенны это проявляется в хаотическом чередовании темных и ярких пятен с частотой от долей герца до нескольких килогерц. При этом иногда возникают замирания сигнала (термин заимствован из радиосвязи) и связь становится неустойчивой. Замирание наиболее сильно проявляется в ясную солнечную погоду, особенно в летние жаркие месяцы, в часы восхода и захода солнца, при сильном ветреСистемы АЛС могут использоваться не только на "последней миле" каналов связи, но также и в качестве вставок в волоконно-оптические линии на отдельных труднопроходимых участках; для связи в горных условиях, в аэропортах, между отдельными зданиями одной организации (органы управления, торговые центры, промышленные предприятия, университетские городки, больничные комплексы, стройплощадки и т. д.); при создании разнесенных в пространстве локальных компьютерных сетей; при организации связи между центрами коммутации и базовыми станциями сотовых сетей; для оперативной прокладки линии при ограниченном времени на монтаж. Поэтому в последнее время возрастает интерес отечественных производителей к этому новому и перспективному сектору



Функциональная схема системы лазерной связи очень проста:

· блок обработки принимает сигналы от различных стандартных устройств (телефона, факса, цифровой АТС, локальной компьютерной сети) и преобразует их в приемлемую для передачи лазерным модемом форму;

· преобразованный сигнал передается электронно-оптическим блоком в виде инфракрасного излучения;

· на приемной стороне собранный оптической системой свет падает на фотоприемник, где преобразуется обратно в электрические сигналы;

· усиленный и обработанный электрический сигнал поступает на блок обработки сигналов, где восстанавливается в первоначальном виде.

Передача и прием осуществляются каждым из парных модемов одновременно и независимо друг от друга. Лазерные модемы устанавливаются таким образом, чтобы оптические оси приемопередатчиков совпадали. Основную сложность представляет собой юстировка направления оптических осей приемопередатчиков. Угол расходимости луча передатчика составляет у разных моделей от нескольких угловых минут до 0,5°, и точность юстировки должна соответствовать этим значениям.

После установки приемопередающих блоков необходимо подключить их к кабельным сетям в обоих зданиях. Существует множество моделей устройств с самыми разнообразными интерфейсами, однако, в отличие от поставщиков оборудования для радиосвязи, производители систем беспроводной оптики придерживаются следующей общей идеологии подключения: линия лазерной связи представляет собой эмуляцию отрезка кабеля (две витые пары или две жилы оптического кабеля). Связанные при помощи беспроводной оптики локальные сети функционируют так, как если бы их соединили выделенным кабелем. Некоторые модели лазерных модемов имеют совмещенные интерфейсы к сети Ethernet и потокам Е1. В результате одна атмосферная линия связи может соединить LAN и телефонные сети зданий без использования мультиплексора.

Вот так выглядит установленная система атмосферной лазерной связи. Пропускная способность системы - 100Mbit/sec на расстояние до 3! километров. фото:

Некоторые беспроводные удаленные мосты применяют для передачи данных инфракрасное излучение лазера. Обычно такое устройство содержит традиционный проводной Ethernet-мост и лазерный модем, обеспечивающий физическую связь. Другими словами, лазерное устройство только посылает биты данных, а всю остальную работу выполняет обычный мост. Лазерные модемы генерируют излучение с длиной волны 820 нм, которое не может быть обнаружено без специальных приборов. Очевидно, что для лазерных мостов излучатель и приемник должны располагаться на линии прямой видимости. Типичное расстояние между мостами составляет немногим больше 1 км и ограничивается мощностью лазера.
Одним из основных преимуществ таких систем является их большая пропускная способность. Второе
преимущество - достаточная помехозащищенность, поскольку инфракрасное излучение не взаимодействует с радиоволнами. Подобно оптоволоконным системам лазерные мосты обеспечивают высокий уровень безопасности. Для перехвата информации необходимо поместить соответствующий прибор на линии луча, что, во-первых, легко может быть обнаружено, а во-вторых, это весьма сложно осуществить, так как такие системы устанавливаются на крышах высотных зданий. Недостатками лазер-базированных систем является влияние на устойчивость связи погодных условий. Сильный дождь, снег или туман приводят к значительному рассеянию луча и ослаблению сигнала. На связь может повлиять также солнечный восход или заход, если канал ориентирован с востока на запад.
Беспроводные мосты используются для постоянного соединения сетей, в качестве запасного канала или как временное средство. Их производством занимаются множество компаний. Цены в зависимости от пропускной способности и расстояния связи составляют от 5 до 75 тыс. долл. за канал. Дорого, однако со временем такое решение может окупиться.

2,5 Гбит/с по лазерному лучу

Компания fSONA Communications представила новую систему беспроводной оптической связи SONAbeam 2500-M, позволяющую достичь скорости передачи данных порядка 2,5 Гбит/с. Основа системы – четыре избыточных передатчика, работающих на длине волны 1550 нм с выходной мощностью лазерного сигнала 560 мВт. На пятикилометровом испытательном полигоне в ясную погоду, система отработала на максимальной скорости и практически без ошибок.

Контрольные вопросы

1. Какие технологии применяются для создания беспроводных сетей?

2. Перечислить основные технологии радиосетей.

3. Что такое точка доступа (access point)?

4. Охарактеризовать технологию 802.11.Что такое направленная и всенаправленная антенна?

5. Что такое роумингом (roaming).?

6. Перечислить технологии, альтернативные стандарту IEEE 802.11;

7. Охарактеризовать технологию Bluetooth .

8. Охарактеризовать технологию HiperLAN .

9. Что такое оптические сети?

10. Что такое микроволновые системы?

11. Охарактеризовать стандарт IEEE 802.16 (WiMAX)?

12. Что такое беспроводные сети на базе низкоорбитальных спутников Земли?

13. Какие устройства входят в состав инфракрасной системы?

14. Что такое ИК-излучение?

15. Что такое атмосферная лазерная связь?

16. Как происходит прием и передача при атмосферной лазерной связи?