Функции и языковые средства субд. Систем управления базами данных. Основы информационной безопасности


Лекции доступны на сайте В разделе сайта: Профессиональная переподготовка Рабочие программы



Языки определения данных и манипулирования данными Для работы с базами данных используются специальные языки, в целом называемые подъязыками данных, поскольку они включают подмножество операторов, связанное с объектами и операциями баз данных, но не содержат конструкции для выполнения всех вычислительных операций языков программирования высокого уровня. Многие СУБД поддерживают возможность внедрения операторов подъязыков данных в языки высокого уровня, таких, например, как COBOL, Fortran, Pascal, Ada, С. Как уже отмечалось, в этом случае язык высокого уровня считается базовым, а подъязык данных внедренным. В СУБД поддерживается несколько специализированных по своим функциям подъязыков. Их можно разбить на две категории: - Язык определения данных - описательный язык, с помощью которого описывается предметная область: именуются объекты, определяются их свойства и связи между объектами. Он используется главным образом для определения логической структуры БД, его нельзя исполь¬зовать для управления данными. Результатом компиляции ЯОД операторов является набор таблиц, хранимый в системном каталоге, в котором содержатся метаданные - Языки манипулирования данными содержит набор операторов манипулирования данными, т. е. операторов, позволяющих заносить данные в БД, удалять, модифицировать или выбирать существующие данные. Языки манипулирования данными делятся на два типа: процедурный ЯМД, декларативный (непроцедурный) ЯМД.


Работая с процедурным ЯМД, пользователь должен четко представлять себе то, что он должен получить, и как он может это сделать с помощью средств ЯМД. Эти средства представляют собой операторы над данными, которые необходимо выполнить в определенном порядке для получения требуемой информации. Обычно такой процедурный язык позволяет извлечь запись, обработать ее и, в зависимости от полученных результатов, извлечь другую запись, которая должна быть подвергнута аналогичной обработке, и т. д. К ним относят языки ЯМД сетевых и иерар¬хических СУБД, языки, поддерживающие операции реляционной алгебры. Декларативные языки ЯМД предоставляют пользователю средства, позволяющие указать лишь то, какие данные требуются. Решение вопроса о том, как их следует извлекать, берет на себя процессор данного языка, работающий с целыми наборами записей. Непроцедурные языки ЯМД позволяют определить весь набор требуемых дан¬ных с помощью одного оператора извлечения или обновления. СУБД транслирует выражение на языке ЯМД в процедуру (или набор процедур), которая обеспечивает манипулирование затребованным набором записей. Данный подход освобождает пользователя от необходимости знать детали внутренней реализации структур данных и особен¬ности алгоритмов, используемых для извлечения и возможного преобразования данных. Непроцедурные языки обыч-но проще понять и использовать, чем процедурные языки. Реляционные СУБД обычно включают поддержку непроцедурных языков манипулирования данными чаще всего это бывает язык структурированных запросов SQL или язык запросов по образцу QBE. Часть непроцедурного языка ЯМД, которая отвечает за извлечение данных, называется языком запросов. Язык запросов можно определить как высокоуров- невый узкоспециализированный язык, предназначенный для удовлетворения различных требований по выборке информации из базы данных. Анализируя тенденции в развитии языков обработки данных, можно предположить, что и в дальнейшем оно пойдет, скорее всего, по направлению развития непроцедурных языков с использованием компонентов высокого уровня, которые часто называют «инструментами четвертого поколения».


SQL (Structured Query Language) SQL (обычно произносимый как "СИКВЭЛ" или "ЭСКЮЭЛЬ") символизирует собой Структурированный Язык Запросов. Это - язык, который дает Вам возможность создавать и работать в реляционных базах данных, являющихся наборами связанной информации, сохраняемой в таблицах.


Языки манипулирования данными Все языки манипулирования данными (ЯМД), созданные до появления реляционных баз данных и разработанные для многих систем управления базами данных (СУБД) персональных компьютеров, были ориентированы на операции с данными, представленными в виде логических записей файлов. Это требовало от пользователей детального знания организации хранения данных и достаточных усилий для указания не только того, какие данные нужны, но и того, где они размещены и как шаг за шагом получить их. сказать название фильма - и шофер сам найдет кинотеатр, в котором показывают нужный фильм. (Подобным же образом, самостоятельно, отыскивает запрошенные данные SQL.) самому узнать, где демонстрируется нужный фильм и назвать кинотеатр. Тогда водитель должен найти адрес этого кинотеатра. придется самому узнать адрес кинотеатра и предложить водителю проехать к нему по таким-то и таким-то улицам. В самом худшем случае вам, может быть, даже придется по дороге давать указания: "Повернуть налево... проехать пять кварталов... повернуть направо...".


Из истории появления SQL Появление теории реляционных баз данных и предложенного Коддом языка запросов "ALPHA", основанного на реляционном исчислении, инициировало разработку ряда языков запросов, которые можно отнести к двум классам: 1.Алгебраические языки, позволяющие выражать запросы средствами специализированных операторов, применяемых к отношениям (JOIN - соединить, INTERSECT - пересечь, SUBTRACT - вычесть и т.д.). 2.Языки исчисления предикатов, которые представляют собой набор правил для записи выражения, определяющего новое отношение из заданной совокупности существующих отношений. Другими словами исчисление предикатов есть метод определения того отношения, которое нам желательно получить (как ответ на запроc) из отношений, уже имеющихся в базе данных.


Разработка, в основном, шла в отделениях фирмы IBM (языки ISBL, SQL, QBE) и университетах США (PIQUE, QUEL). Последний создавался для СУБД INGRES (Interactive Graphics and Retrieval System), которая была разработана в начале 70-х годов в Университете шт. Калифорния и сегодня входит в пятерку лучших профессиональных СУБД. Сегодня из всех этих языков полностью сохранились и развиваются QBE (Query-By- Example - запрос по образцу) и SQL, а из остальных взяты в расширение внутренних языков СУБД только наиболее интересные конструкции.


В начале 80-х годов SQL "победил" другие языки запросов и стал фактическим стандартом таких языков для профессиональных реляционных СУБД. В 1987 году он стал международным стандартом языка баз данных и начал внедряться во все распространенные СУБД персональных компьютеров.


Почему SQL? 1.Непрерывный рост быстродействия, а также снижение энергопотребления, размеров и стоимости компьютеров привели к резкому расширению возможных рынков их сбыта, круга пользователей, разнообразия типов и цен. Естественно, что расширился спрос на разнообразное программное обеспечение. 2.Фирмы, производящие программное обеспечение, стали выпускать на рынок все более и более интеллектуальные и, следовательно, объемные программные комплексы. Приобретая (желая приобрести) такие комплексы, многие организации и отдельные пользователи часто не могли разместить их на собственных ЭВМ, однако не хотели и отказываться от нового сервиса. Для обмена информацией и ее обобществления были созданы сети ЭВМ, где обобществляемые программы и данные стали размещать на специальных обслуживающих устройствах - файловых серверах. 3.СУБД, работающие с файловыми серверами, позволяют множеству пользователей разных ЭВМ (иногда расположенных достаточно далеко друг от друга) получать доступ к одним и тем же базам данных. При этом упрощается разработка различных автоматизированных систем управления организациями, учебных комплексов, информационных и других систем, где множество сотрудников (учащихся) должны использовать общие данные и обмениваться создаваемыми в процессе работы (обучения). Однако при такой идеологии вся обработка запросов из программ или с терминалов пользовательских ЭВМ выполняется на этих же ЭВМ. Поэтому для реализации даже простого запроса ЭВМ часто должна считывать из файлового сервера и (или) записывать на сервер целые файлы, что ведет к конфликтным ситуациям и перегрузке сети.


4.Для исключения указанных и некоторых других недостатков была предложена технология "Клиент-Сервер", по которой запросы пользовательских ЭВМ (Клиент) обрабатываются на специальных серверах баз данных (Сервер), а на ЭВМ возвращаются лишь результаты обработки запроса. При этом, естественно, нужен единый язык общения с Сервером и в качестве такого языка выбран SQL. Поэтому все современные версии профессиональных реляционных СУБД (DB2, Oracle, Ingres, Informix, Sybase, Progress, Rdb) и даже нереляционных СУБД (например, Adabas) используют технологию "Клиент-Сервер" и язык SQL. К тому же приходят разработчики СУБД персональных ЭВМ, многие из которых уже сегодня снабжены языком SQL. 5.Реализация в SQL концепции операций, ориентированных на табличное представление данных, позволило создать компактный язык с небольшим (менее 30) набором предложений. SQL может использоваться как ИНТЕРАКТИВНЫЙ (для выполнения запросов) и как ВСТРОЕННЫЙ (для построения прикладных программ).


Состав языка SQL Язык SQL предназначен для манипулирования данными в реляционных базах данных, определения структуры баз данных и для управления правами доступа к данным в многопользовательской среде. Поэтому, в язык SQL в качестве составных частей входят: язык манипулирования данными (Data Manipulation Language, DML) язык определения данных (Data Definition Language, DDL) язык управления данными (Data Control Language, DCL). Подчеркнем, что это не отдельные языки, а различные команды одного языка. Такое деление проведено только лишь с точки зрения различного функционального назначения этих команд.




Язык определения данных используется для создания и изменения структуры базы данных и ее составных частей - таблиц, индексов, представлений (виртуальных таблиц), а также триггеров и сохраненных процедур. Основными его командами являются: CREATE DATABASE(создать базу данных) CREATE TABLE(создать таблицу) CREATE VIEW(создать виртуальную таблицу) CREATE INDEX(создать индекс) CREATE TRIGGER(создать триггер) CREATE PROCEDURE(создать сохраненную процедуру) ALTER DATABASE(модифицировать базу данных) ALTER TABLE(модифицировать таблицу) ALTER VIEW(модифицировать виртуальную таблицу) ALTER INDEX(модифицировать индекс) ALTER TRIGGER(модифицировать триггер) ALTER PROCEDURE(модифицировать сохраненную процедуру) DROP DATABASE(удалить базу данных) DROP TABLE(удалить таблицу) DROP VIEW(удалить виртуальную таблицу) DROP INDEX(удалить индекс) DROP TRIGGER(удалить триггер) DROP PROCEDURE(удалить сохраненную процедуру)


Язык управления данными используется для управления правами доступа к данным и выполнением процедур в многопользовательской среде. Более точно его можно назвать "язык управления доступом". Он состоит из двух основных команд: GRANT(дать права) REVOKE(забрать права)


С точки зрения прикладного интерфейса существуют две разновидности команд SQL: интерактивный SQL встроенный SQL. Интерактивный SQL используется в специальных утилитах (типа WISQL или DBD), позволяющих в интерактивном режиме вводить запросы с использованием команд SQL, посылать их для выполнения на сервер и получать результаты в предназначенном для этого окне. Встроенный SQL используется в прикладных программах, позволяя им посылать запросы к серверу и обрабатывать полученные результаты, в том числе комбинируя set-ориентированный и record-ориентированный подходы.


SQL включает: 1.предложения определения данных (определение баз данных, а также определение и уничтожение таблиц и индексов); 2.запросы на выбор данных (предложение SELECT); 3.предложения модификации данных (добавление, удаление и изменение данных); 4.предложения управления данными (предоставление и отмена привилегий на доступ к данным, управление транзакциями и другие). Кроме того, он предоставляет возможность выполнять в этих предложениях: арифметические вычисления (включая разнообразные функциональные преобразования), обработку текстовых строк и выполнение операций сравнения значений арифметических выражений и текстов; упорядочение строк и (или) столбцов при выводе содержимого таблиц на печать или экран дисплея; создание представлений (виртуальных таблиц), позволяющих пользователям иметь свой взгляд на данные без увеличения их объема в базе данных; запоминание выводимого по запросу содержимого таблицы, нескольких таблиц или представления в другой таблице (реляционная операция присваивания). агрегатирование данных: группирование данных и применение к этим группам таких операций, как среднее, сумма, максимум, минимум, число элементов и т.п.


Основные типы данных SQL 1.INTEGER - целое число (обычно до 10 значащих цифр и знак); 2.SMALLINT - "короткое целое" (обычно до 5 значащих цифр и знак); 3.DECIMAL(p,q) - десятичное число, имеющее p цифр (0 0 и разное в разных СУБД, но не меньше 4096); 7.DATE - дата в формате, определяемом специальной командой (по умолчанию mm/dd/yy); поля даты могут содержать только реальные даты, начинающиеся за несколько тысячелетий до н.э. и ограниченные пятым-десятым тысячелетием н.э.; 8.TIME - время в формате, определяемом специальной командой, (по умолчанию hh.mm.ss); 9.DATETIME - комбинация даты и времени; 10.MONEY - деньги в формате, определяющем символ денежной единицы ($, руб,...) и его расположение (суффикс или префикс), точность дробной части и условие для показа денежного значения. 0 и разное в разных СУБД, но не меньше 4096); 7.DATE - дата в формате, определяемом специальной командой (по умолчанию mm/dd/yy); поля даты могут содержать только реальные даты, начинающиеся за несколько тысячелетий до н.э. и ограниченные пятым-десятым тысячелетием н.э.; 8.TIME - время в формате, определяемом специальной командой, (по умолчанию hh.mm.ss); 9.DATETIME - комбинация даты и времени; 10.MONEY - деньги в формате, определяющем символ денежной единицы ($, руб,...) и его расположение (суффикс или префикс), точность дробной части и условие для показа денежного значения.">


Ориентированный на работу с таблицами SQL не имеет достаточных средств для создания сложных прикладных программ. Поэтому в разных СУБД он либо используется вместе с языками программирования высокого уровня (например, такими как Си или Паскаль), либо включен в состав команд специально разработанного языка СУБД (язык систем dBASE, R:BASE и т.п.). Унификация полных языков современных профессиональных СУБД достигается за счет внедрения объектно-ориентированного языка четвертого поколения 4GL. Последний позволяет организовывать циклы, условные предложения, меню, экранные формы, сложные запросы к базам данных с интерфейсом, ориентированным как на алфавитно- цифровые терминалы, так и на оконный графический интерфейс (X- Windows, MS-Windows).




Представления Одна из основных задач, которую позволяют решать представления, - обеспечение независимости пользовательских программ от изменения логической структуры базы данных при ее расширении и (или) изменении размещения столбцов, возникающего, например, при расщеплении таблиц. В последнем случае можно создать ПРЕДСТАВЛЕНИЕ - соединение с именем и структурой расщепленной таблицы, позволяющее сохранить программы, существовавшие до изменения структуры базы данных. Кроме того, представления дают возможность различным пользователям по-разному видеть одни и те же данные, возможно, даже в одно и то же время. Это особенно ценно при работе различных категорий пользователей с единой интегрированной базой данных. Пользователям предоставляют только интересующие их данные в наиболее удобной для них форме (окно в таблицу или в любое соединение любых таблиц). Наконец, от определенных пользователей могут быть скрыты некоторые данные, невидимые через предложенное им представление. Таким образом, принуждение пользователя осуществлять доступ к базе данных через представления является простым, но эффективным механизмом для управления санкционированием доступа.


Курсоры Основная проблема "встраивания" предложения SELECT в программу заключается в том, что SELECT, как правило, порождает таблицу с множеством строк и столбцов, а включающий язык не обладает хорошими средствами, позволяющими оперировать одновременно более чем одной записью (строкой). По этим причинам необходимо обеспечить своего рода мост между уровнем множеств языка SQL и уровнем записей включающего языка. Такой мост обеспечивают курсоры. Курсор состоит, по существу, из некоторого рода указателя, который может использоваться для просмотра множества записей. Поочередно указывая каждую запись в данном множестве, он обеспечивает возможность обращения к этим записям по одной одновременно.


Создание базовых таблиц Базовые таблицы описываются в SQL с помощью предложения CREATE TABLE (создать таблицу), синтаксис которого имеет небольшие различия в различных СУБД. Однако все они поддерживают следующую минимальную форму: CREATE TABLE базовая_таблица (столбец тип_данных [,столбец тип_данных ]...); где ТИП_ДАННЫХ должен принадлежать к одному из типов данных, поддерживаемых СУБД






Логическая концептуальная схема БД «Поставщики-Детали» Код_рег Имя_ре г Код_Поста вщ Имя_Поста вщ Код_города Код_Поста вщ Код_Детал и Количеств о Код_Детал и Название_ дет Код_цвета Код_горо да Имя_горо да Код_реги она Код_Цвета Наимен_цвета Регион Город Поставка Поставщик Детали Цвета


























Удаление базовой таблицы Существующую базовую таблицу можно в любой момент уничтожить с помощью предложения DROP TABLE (уничтожить таблицу): DROP TABLE базовая_таблица; по которому удаляется описание таблицы, ее данные, связанные с ней представления и индексы, построенные для столбцов таблицы








О предложении SELECT Все запросы на получение практически любого количества данных из одной или нескольких таблиц выполняются с помощью единственного предложения SELECT. В общем случае результатом реализации предложения SELECT является другая таблица. К этой новой (рабочей) таблице может быть снова применена операция SELECT и т.д., т.е. такие операции могут быть вложены друг в друга. Представляет исторический интерес тот факт, что именно возможность включения одного предложения SELECT внутрь другого послужила мотивировкой использования прилагательного "структуризированный" в названии языка SQL.


Предложение SELECT может использоваться как: 1.самостоятельная команда на получение и вывод строк таблицы, сформированной из столбцов и строк одной или нескольких таблиц (представлений); 2.элемент WHERE- или HAVING-условия (сокращенный вариант предложения, называемый "вложенный запрос"); 3.фраза выбора в командах CREAT VIEW, DECLARE CURSOR или INSERT; 4.средство присвоения глобальным переменным значений из строк сформированной таблицы (INTO- фраза).


SELECT (выбрать) данные из указанных столбцов и (если необходимо) выполнить перед выводом их преобразование в соответствии с указанными выражениями и (или) функциями FROM (из) перечисленных таблиц, в которых расположены эти столбцы WHERE (где) строки из указанных таблиц должны удовлетворять указанному перечню условий отбора строк GROUP BY (группируя по) указанному перечню столбцов с тем, чтобы получить для каждой группы единственное агрегированное значение, используя во фразе SELECT SQL-функции SUM (сумма), COUNT (количество), MIN (минимальное значение), MAX (максимальное значение) или AVG (среднее значение) HAVING (имея) в результате лишь те группы, которые удовлетворяют указанному перечню условий отбора групп









= (больше или равно), которые могут предваряться оператором NOT, создавая, например," title="Выборка c использованием фразы WHERE (выборка с условием) Для отбора нужных строк таблицы можно использовать операторы сравнения: = (равно), (не равно), (больше), >= (больше или равно), которые могут предваряться оператором NOT, создавая, например," class="link_thumb"> 52 Выборка c использованием фразы WHERE (выборка с условием) Для отбора нужных строк таблицы можно использовать операторы сравнения: = (равно), (не равно), (больше), >= (больше или равно), которые могут предваряться оператором NOT, создавая, например, отношения "не меньше" и "не больше". Возможность использования нескольких условий, соединенных логическими операторами AND, OR, AND NOT и OR NOT, позволяет осуществить более детальный отбор строк. = (больше или равно), которые могут предваряться оператором NOT, создавая, например,"> = (больше или равно), которые могут предваряться оператором NOT, создавая, например, отношения "не меньше" и "не больше". Возможность использования нескольких условий, соединенных логическими операторами AND, OR, AND NOT и OR NOT, позволяет осуществить более детальный отбор строк."> = (больше или равно), которые могут предваряться оператором NOT, создавая, например," title="Выборка c использованием фразы WHERE (выборка с условием) Для отбора нужных строк таблицы можно использовать операторы сравнения: = (равно), (не равно), (больше), >= (больше или равно), которые могут предваряться оператором NOT, создавая, например,"> title="Выборка c использованием фразы WHERE (выборка с условием) Для отбора нужных строк таблицы можно использовать операторы сравнения: = (равно), (не равно), (больше), >= (больше или равно), которые могут предваряться оператором NOT, создавая, например,">


Выбраны детали, произведенные года с кодом цвета 111




Использование LIKE Обычная форма "имя_столбца LIKE текстовая_константа" для столбца текстового типа позволяет отыскать все значения указанного столбца, соответствующие образцу, заданному "текстовой_константой". Символы этой константы интерпретируются следующим образом: символ * (звездочка) – заменяет любую последовательность из N символов (где N может быть нулем), все другие символы означают просто сами себя.



Запрос с параметром Можно использовать LIKE для создания так называемого ЗАПРОСА С ПАРАМЕТРОМ, когда при запуске запроса на выполнение пользователь сам задаст условие отбора: "имя_столбца LIKE [текст для отбора]"



Выборка с упорядочением Простейший вариант этой фразы - упорядочение строк результата по значению одного из столбцов с указанием порядка сортировки по возрастанию ASC (ASCending) или убыванию DESC (DESCending), или без такого указания. (По умолчанию строки будут сортироваться в порядке возрастания значений в указанном столбце - ASC.)




Агрегирование данных SQL существует ряд специальных стандартных функций (SQL-функций). Каждая из этих функций оперирует совокупностью значений столбца некоторой таблицы и создает единственное значение, определяемое так: COUNT - число значений в столбце SUM - сумма значений в столбце AVG - среднее значение в столбце MAX - самое большое значение в столбце MIN - самое малое значение в столбце. Для функций SUM и AVG рассматриваемый столбец должен содержать числовые значения.


Следует отметить, что здесь столбец - это столбец виртуальной таблицы, в которой могут содержаться данные не только из столбца базовой таблицы, но и данные, полученные путем функционального преобразования и (или) связывания символами арифметических операций значений из одного или нескольких столбцов. При этом выражение, определяющее столбец такой таблицы, может быть сколь угодно сложным, но не должно содержать SQL-функций (вложенность SQL-функций не допускается). Однако из SQL-функций можно составлять любые выражения. Аргументу всех функций может предшествовать ключевое слово DISTINCT (различный), указывающее, что избыточные дублирующие значения должны быть исключены перед тем, как будет применяться функция.


Пример агрегирования Подсчитывается суммарное количество деталей с наименованием Гайка (=531) и количество непустых значений в поле Кол_во, соответствующих записями с наименованием детали Гайка (3 таких поля)





Фраза HAVING Фраза HAVING играет такую же роль для групп, что и фраза WHERE для строк: она используется для исключения групп, точно так же, как WHERE используется для исключения строк. Эта фраза включается в предложение лишь при наличии фразы GROUP BY, а выражение в HAVING должно принимать единственное значение для группы. Предложения модификации данных SQL Модификация данных может выполняться с помощью предложений DELETE (удалить), INSERT (вставить) и UPDATE (обновить). Подобно предложению SELECT они могут оперировать как базовыми таблицами, так и представлениями. Однако по ряду причин не все представления являются обновляемыми.




Предложение INSERT имеет один из следующих форматов: INSERT INTO {базовая таблица | представление} [(столбец [,столбец]...)] VALUES ({константа | переменная} [,{константа | переменная}]...); или INSERT INTO {базовая таблица | представление} [(столбец [,столбец]...)] подзапрос; В первом формате в таблицу вставляется строка со значениями полей, указанными в перечне фразы VALUES (значения), причем i-е значение соответствует i-му столбцу в списке столбцов (столбцы, не указанные в списке, заполняются NULL-значениями). Если в списке VALUES фразы указаны все столбцы модифицируемой таблицы и порядок их перечисления соответствует порядку столбцов в описании таблицы, то список столбцов в фразе INTO можно опустить. Во втором формате сначала выполняется подзапрос, т.е. по предложению SELECT в памяти формируется рабочая таблица, а потом строки рабочей таблицы загружаются в модифицируемую таблицу. При этом i-й столбец рабочей таблицы (i-й элемент списка SELECT) соответствует i-му столбцу в списке столбцов модифицируемой таблицы.


Предложение UPDATE имеет следующий формат: UPDATE (базовая таблица | представление} SET столбец = значение [, столбец = значение]... где значение – это столбец | выражение | константа | переменная, и может включать столбцы лишь из обновляемой таблицы, т.е. значение одного из столбцов модифицируемой таблицы может заменяться на значение ее другого столбца или выражения, содержащего значения нескольких ее столбцов, включая изменяемый. При отсутствии WHERE фразы обновляются значения указанных столбцов во всех строках модифицируемой таблицы. WHERE фраза позволяет сократить число обновляемых строк, указывая условия их отбора. В значениях, находящихся в правых частях равенств фразы SET, следует уточнять имена используемых столбцов, предваряя их именем таблицы.

Языковые и программные средства СУБД

Понятие и классификация СУБД

СУБД – это программно-языковый комплекс, предназначенный для создания в ЭВМ общей для многих пользователей БД и управления хранящимися в ней данными. Под управлением БД понимается поддержание ее в актуальном состоянии, что достигается путем своевременного изменения хранящихся в БД, восстановления данных при нестандартных ситуациях, защиты данных от несанкционированного вмешательства и выполнения многих других функций, обеспечивающих адекватное отображение БД некоторой предметной области. СУБД обеспечивают эффективный доступ пользователей к содержащимся в ней данным в рамках полномочий, предоставленных пользователям.

По степени универсальности различают два класса СУБД:

системы общего назначения, которые не ориентированы на конкретную предметную область или на информационные потребности определенной группы пользователей;

специализированные системы, функционирующие на некоторой модели ЭВМ в определенной операционной системе и имеют средства настройки на работу с БД в конкретной предметной области.

По выполняемым функциям СУБД делят на информационные и операционные. Информационные позволяют организовать хранение информации и доступ к ней для ознакомления и выдачи простых справок. Операционные выполняют сложную обработку данных.

По языкам общения СУБД могут быть открытые, замкнутые и смешанные. В открытых системах для обращения к БД используются универсальные языки программирования. Замкнутые системы имеют собственные языки общения с пользователями БД.

По мощности выделяют настольные и корпоративные СУБД. Настольные системы (Access, FoxPro, Paradox) ориентированы на конечных пользователей (специалистов в конкретной предметной области). Они не предъявляют высоких требований к техническим средствам, отличаются низкой стоимостью. Корпоративные СУБД (Oracle, SyBase, DB2) обеспечивают работу в распределенной среде, имеют высокую производительность, развитые средства администрирования и более широкие возможности поддержания целостности. СУБД MS SQL Server, Interbase имеют возможности и настольных и корпоративных систем.

По реализуемой модели данных СУБД получили названия в соответствии со схемой данных, которую они поддерживают: иерархические, сетевые, реляционные, объектно-ориентированные.

Языковые и программные средства СУБД

Языковые средства СУБД необходимы для выполнения следующих функций:

– описания представления БД;

– выполнения операций манипулирования данными;

– управления БД.

Первая из этих функций обеспечивается языком описания (определения) данных (ЯОД) – Shema Definition Language . Описание БД средствами ЯОД является схемой базы данных. Схема БД описывает структуру базы данных и налагаемые на нее ограничения целостности в соответствии с теми правилами, которые регламентированы моделью данных используемой СУБД. В некоторых СУБД язык описания данных обеспечивает также возможность задания ограничений доступа к данным или полномочий пользователей.

Язык манипулирования данными (ЯМД) – Shema Manipulation Language содержит набор операторов манипулирования данными, позволяющих заносить данные в БД, удалять, модифицировать их и выбирать запрашиваемую информацию из БД.

В настоящее время имеются многочисленные примеры языков СУБД, объединяющих возможности описания данных и манипулирования данными в единых синтаксических рамках. Единый интегрированный язык современных СУБД содержит все необходимые средства для работы с базой данных, начиная от ее создания, и обеспечивает пользовательский интерфейс с БД. Наиболее популярным и стандартным для реляционных СУБД является язык SQL (Structured Query Language - язык структурируемых запросов), разработанный фирмой IBM. Для поддержки объектных моделей предназначен язык OQL (Object Query Language), в основу которого положен SQL.

Примерами других языков этого класса могут служить: Quel системы Ingres, созданный Калифорнийским университетом; dBase семейства СУБД фирмы Asthon – Tate; R:Base фирмы Microrim.

Процедурным языком, при помощи которого осуществляется управление базой данных, является языкQBE (Query-By-Example) . Этот язык предоставляет пользователю удобный и унифицированный интерфейс для осуществления операций по ведению БД.

К программным средствам СУБД относятся языки программирования, позволяющие создавать сложные системы обработки данных, ориентированные на конкретные задачи и конкретного пользователя.

В СУБД MS Access программирование осуществляется с помощью макросов и модулей. Макросы – это небольшие программы на языке макрокоманд системы Access. Они представляют собой структуру, состоящую из одной или нескольких макрокоманд, которые выполняются либо последовательно, либо в порядке, заданном определенными условиями. Макросы позволяют запрограммировать практически все процедуры, которые составляют функциональные возможности СУБД и выполняются пользователями БД, не владеющих языками программирования.

Модули представляют собой процедуры на языке Visual Basic for Application (VBA).

VBA является общим языком для всех приложений Microsoft Office и позволяет решать любые задачи программирования, начиная от автоматизации действий конкретного пользователя и заканчивая разработкой сложных приложений, использующих Microsoft Office в качестве среды разработки. Язык VBA является объектно-ориентированным языком программирования и вычисления. Основой программ на VBA являются процедуры, состоящие из инструкций, выполняющих необходимые операции. Процедуры хранятся в модулях, из которых они запрашиваются на выполнение. Модуль служит для объединения процедур по функциональному назначению или привязки к форме или отчету.

В Web-программировании активно используется СУБД MySQL. Для работы с БД этой системы применяют язык программирования PHP. Это Си-подобный язык, предназначенный для быстрого создания программ на Web-сервере.

На языке PHP разрабатываются скрипты (scripting language) – кодовые (программные) инструкции по выполнению определенных действий над данными, выбранными из БД. Скрипты вставляются в HTML-документы, преобразуя их из статических в активные. Web-сервер просматривает документ, выполняет найденные в нем PHP-инструкции и результат выполнения инструкций возвращает пользователю.

С помощью PHP можно обрабатывать данные из форм, генерировать динамические страницы, создавать счетчики, гостевые книги и т.д. В PHP включена поддержка многих баз данных: FilePro, Informix, MySQL, Oracle, Sybase и др.

Функциональные возможности поддерживаемой средствами СУБД модели данных становятся доступными пользователю благодаря ее языковым средствам. Языковые средства СУБД используются для выполнения двух основных функций - для описания представления базы данных на управляемых уровнях системной архитектуры и для выполнения операций манипулирования данными.

Язык описания данных (ЯОД) предназначен для задания схемы базы данных, которая включает описание структуры базы данных и налагаемых на нее ограничений целостности в рамках правил, регламентированных той моделью данных, которая поддерживается рассматриваемой СУБД. Помимо указанных функций, ЯОД обеспечивают также возможности задания ограничений доступа к данным или полномочий пользователей.

Язык манипулирования данными (ЯМД) позволяет запрашивать предусмотренные в системе операции над данными из базы данных. После выполнения оператора, записанного на ЯМД, информационное заполнение базы данных изменяется

Язык запросов (ЯЗ) позволяет выбирать данные из БД, агрегировать и подвергать всевозможной аналитической обработке.

Аналогично языку определения данных ЯМД не обязательно выступает в форме синтаксически самостоятельного языка СУБД. На практике разделение ЯОД и ЯМД играет скорее методическую роль или используется в технологических целях.

ЯОД, ЯМД и ЯЗ не всегда синтаксически оформляется в виде самостоятельных языков. Наоборот, в настоящее время все они вошли в состав единого реляционного язык SQL. С 1986 г. был принят ряд версий международного стандарта SQL. Он используется в большинстве коммерческих реляционных СУБД, в том числе и на персональных компьютерах.

Некоторые СУБД располагают такими языками, которые не только реализуют функции определения данных и манипулирования данными, но и обладают средствами, свойственными универсальным языкам программирования. Благодаря этому они могут использоваться как функционально полное инструментальное средство для создания приложений систем баз данных. В качестве примера приведем языки систем dBase, Clipper, Paradox.

Для того чтобы иметь развитые средства разработки приложений, в СУБД обеспечиваются интерфейсы прикладного программирования. Приложения для таких систем могут разрабатываться с помощью расширения традиционного языка программирования операторами (командами, функциями, процедурами и т.п.) указанного интерфейса. Благодаря этому будет восполняться функциональная неполнота языков данной системы. Язык программирования выступает при этом в роли включающего языка по отношению к языку интерфейса прикладного программирования СУБД, и прикладные системы реализуются на таком расширенном языке. Интерфейсы прикладного программирования предусмотрены во многих СУБД.



Контрольные вопросы по теме.

1.В каких формах могут быть реализованы языковые средства модели данных в СУБД?

2.Какие две основные функции выполняют языковые средства моделей данных?

3.Для каких целей служат языки определения данных в СУБД?

4.Что такое схема базы данных, какая связь существует между схемой и языком определения данных?

5.Средствами каких языков определяются в СУБД междууровневые отображения данных?

6.Какие функции выполняют языки манипулирования данными?

7.Приведите пример языка, который выполняет функции как определения данных, так и манипулирования данными.

8.Каково назначение языков запросов СУБД?

9.Для каких целей разрабатывались языки программирования баз данных?

Система управления базами данных (СУБД) - специализированная программа (чаще комплекс программ), предназначенная для организации и ведения базы данных. Для создания и управления информационной системой СУБД необходима в той же степени, как для разработки программы на алгоритмическом языке необходим транслятор.

Основные функции СУБД:

· управление данными во внешней памяти (на дисках);

· управление данными в оперативной памяти с использованием дискового кэша;

· журнализация изменений, резервное копирование и восстановление базы данных после сбоев;

· поддержка языков БД (язык определения данных, язык манипулирования данными).

Обычно современная СУБД содержит следующие компоненты:

· ядро, которое отвечает за управление данными во внешней и оперативной памяти и журнализацию;

· процессор языка базы данных, обеспечивающий оптимизацию запросов на извлечение и изменение данных и создание, как правило, машинно-независимого исполняемого внутреннего кода;

· подсистему поддержки времени исполнения, которая интерпретирует программы манипуляции данными, создающие пользовательский интерфейс с СУБД;

· сервисные программы (внешние утилиты), обеспечивающие ряд дополнительных возможностей по обслуживанию информационной системы.

Классификация СУБД.

По модели данных:

· Иерархические;

· Сетевые;

· Реляционные;

· Объектно-реляционные;

· Объектно-ориентированные.

По архитектуре организации хранения данных:

· локальные СУБД (все части локальной СУБД размещаются на одном компьютере);

· распределенные СУБД (части СУБД могут размещаться на двух и более компьютерах).

По способу доступа к БД:

· Файл-серверные.

В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. Ядро СУБД располагается на каждом клиентском компьютере. Доступ к данным осуществляется через локальную сеть. Синхронизация чтений и обновлений осуществляется посредством файловых блокировок. Преимуществом этой архитектуры является низкая нагрузка на ЦП сервера, а недостатком - высокая загрузка локальной сети.

Примеры: Microsoft Access, Borland Paradox.

· Клиент-серверные.

Такие СУБД состоят из клиентской части и сервера. Клиент-серверные СУБД, в отличие от файл-серверных, обеспечивают разграничение доступа между пользователями и мало загружают сеть и клиентские машины. Сервер является внешней по отношению к клиенту программой, и по надобности его можно заменить другим. Недостаток клиент-серверных СУБД в самом факте существования сервера и больших вычислительных ресурсах, потребляемых сервером.

Примеры: Firebird, Interbase, MS SQL Server, Sybase, Oracle, PostgreSQL, MySQL, ЛИНТЕР.

· Встраиваемые.

Встраиваемая СУБД - библиотека, которая позволяет унифицированным образом хранить большие объёмы данных на локальной машине. Доступ к данным может происходить через SQL либо через особые функции СУБД. Встраиваемые СУБД быстрее обычных клиент-серверных и не требуют установки сервера, поэтому востребованы в локальном ПО, которое имеет дело с большими объёмами данных (например, геоинформационные системы).

Примеры: OpenEdge, SQLite, BerkeleyDB, один из вариантов Firebird, один из вариантов MySQL, Sav Zigzag, Microsoft SQL Server Compact, ЛИНТЕР.

Поддержка языков БД

Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В ранних СУБД поддерживалось несколько специализированных по своим функциям языков. Чаще всего выделялись два языка - язык определения схемы БД (SDL - Schema Definition Language) и язык манипулирования данными (DML - Data Manipulation Language). SDL служил главным образом для определения логической структуры БД, т.е. той структуры БД, какой она представляется пользователям. DML содержал набор операторов манипулирования данными, т.е. операторов, позволяющих заносить данные в БД, удалять, модифицировать или выбирать существующие данные.

В современных СУБД обычно поддерживается единый интегрированный язык, содержащий все необходимые средства для работы с БД, начиная от ее создания, и обеспечивающий базовый пользовательский интерфейс с базами данных. Стандартным языком наиболее распространенных в настоящее время реляционных СУБД является язык SQL (Structured Query Language).

Основные функции реляционной СУБД, поддерживаемые при реализации интерфейса SQL):

Прежде всего, язык SQL сочетает средства SDL и DML, т.е. позволяет определять схему реляционной БД и манипулировать данными. При этом именование объектов БД (для реляционной БД - именование таблиц и их столбцов) поддерживается на языковом уровне в том смысле, что компилятор языка SQL производит преобразование имен объектов в их внутренние идентификаторы на основании специально поддерживаемых служебных таблиц-каталогов. Внутренняя часть СУБД (ядро) вообще не работает с именами таблиц и их столбцов.

Язык SQL содержит специальные средства определения ограничений целостности БД. Опять же, ограничения целостности хранятся в специальных таблицах-каталогах, и обеспечение контроля целостности БД производится на языковом уровне, т.е. при компиляции операторов модификации БД компилятор SQL на основании имеющихся в БД ограничений целостности генерирует соответствующий программный код.

Специальные операторы языка SQL позволяют определять так называемые представления БД, фактически являющиеся хранимыми в БД запросами (результатом любого запроса к реляционной БД является таблица) с именованными столбцами. Для пользователя представление является такой же таблицей, как любая базовая таблица, хранимая в БД, но с помощью представлений можно ограничить или наоборот расширить видимость БД для конкретного пользователя. Поддержание представлений производится также на языковом уровне.

Авторизация доступа к объектам БД производится также на основе специального набора операторов SQL. Идея состоит в том, что для выполнения операторов SQL разного вида пользователь должен обладать различными полномочиями. Пользователь, создавший таблицу БД, обладает полным набором полномочий для работы с этой таблицей. В число этих полномочий входит полномочие на передачу всех или части полномочий другим пользователям, включая полномочие на передачу полномочий. Полномочия пользователей описываются в специальных таблицах-каталогах, контроль полномочий поддерживается на языковом уровне.

Более точно, к числу функций СУБД принято относить следующие:

1. Непосредственное управление данными во внешней памяти

Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для ускорения доступа к данным в некоторых случаях (обычно для этого используются индексы). В некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти . Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД .

2. Управление буферами оперативной памяти

СУБД обычно работают с БД значительного размера; по крайней мере, этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти . Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. При этом, даже если операционная система производит общесистемную буферизацию (как в случае ОС UNIX ), этого недостаточно для целей СУБД , которая располагает гораздо большей информацией о полезности буферизации той или иной части БД . Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов.

Заметим, что существует отдельное направление СУБД , которое ориентировано на постоянное присутствие в оперативной памяти всей БД . Это направление основывается на предположении, что в будущем объем оперативной памяти компьютеров будет настолько велик, что позволит не беспокоиться о буферизации. Пока эти работы находятся в стадии исследований.

3. Управление транзакциями

Транзакция - это последовательность операций над БД, рассматриваемых СУБД как единое целое.

Либо транзакция успешно выполняется, и СУБД фиксирует изменения БД , произведенные этой транзакцией, во внешней памяти, либо ни одно из этих изменений никак не отражается на состоянии БД .

Понятие транзакции необходимо для поддержания логической целостности БД . Приведем пример информационной системы с файлами СОТРУДНИКИ и ОТДЕЛЫ, единственным способом не нарушить целостность БД при выполнении операции приема на работу нового сотрудника является объединение элементарных операций над файлами СОТРУДНИКИ и ОТДЕЛЫ в одну транзакцию. Таким образом, поддержание механизма транзакций является обязательным условием даже однопользовательских СУБД (если, конечно, такая система заслуживает названия СУБД ). Но понятие транзакции гораздо более важно в многопользовательских СУБД .

То свойство, что каждая транзакция начинается при целостном состоянии БД и оставляет это состояние целостным после своего завершения, делает очень удобным использование понятия транзакции как единицы активности пользователя по отношению к БД . При соответствующем управлении параллельно выполняющимися транзакциями со стороны СУБД каждый из пользователей может в принципе ощущать себя единственным пользователем СУБД (на самом деле, это несколько идеализированное представление , поскольку в некоторых случаях пользователи многопользовательских СУБД могут ощутить присутствие своих коллег).

4. Журнализация

Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматриваются два возможных вида аппаратных сбоев: так называемые мягкие сбои, которые можно трактовать как внезапную остановку работы компьютера (например, аварийное выключение питания), и жесткие сбои, характеризуемые потерей информации на носителях внешней памяти. Примерами программных сбоев могут быть: аварийное завершение работы СУБД ( по причине ошибки в программе или в результате некоторого аппаратного сбоя) или аварийное завершение пользовательской программы, в результате чего некоторая транзакция остается незавершенной. Первую ситуацию можно рассматривать как особый вид мягкого аппаратного сбоя; при возникновении последней требуется ликвидировать последствия только одной транзакции.

Понятно, что в любом случае для восстановления БД нужно располагать некоторой дополнительной информацией. Другими словами, поддержание надежности хранения данных в БД требует избыточности хранения данных, причем та часть данных, которая используется для восстановления, должна храниться особо надежно. Наиболее распространенным методом поддержания такой избыточной информации является ведение журнала изменений БД .

Журнал - это особая часть БД, недоступная пользователям СУБД и поддерживаемая с особой тщательностью (иногда поддерживаются две копии журнала, располагаемые на разных физических дисках), в которую поступают записи обо всех изменениях основной части БД. В разных СУБД изменения БД журнализуются на разных уровнях: иногда запись в журнале соответствует некоторой логической операции изменения БД (например, операции удаления строки из таблицы реляционной БД ), иногда - минимальной внутренней операции модификации страницы внешней памяти; в некоторых системах одновременно используются оба подхода.

Во всех случаях придерживаются стратегии "упреждающей" записи в журнал (так называемого протокола Write Ahead Log - WAL). Грубо говоря, эта стратегия заключается в том, что запись об изменении любого объекта БД должна попасть во внешнюю память журнала раньше, чем измененный объект попадет во внешнюю память основной части БД . Известно, что если в СУБД корректно соблюдается протокол WAL, то с помощью журнала можно решить все проблемы восстановления БД после любого сбоя.

Самая простая ситуация восстановления - индивидуальный откат транзакции. Строго говоря, для этого не требуется общесистемный журнал изменений БД . Достаточно для каждой транзакции поддерживать локальный журнал операций модификации БД , выполненных в этой транзакции, и производить откат транзакции, путем выполнения обратных операций, следуя от конца локального журнала. В некоторых СУБД так и делают, но в большинстве систем локальные журналы не поддерживают, а индивидуальный откат транзакции выполняют по общесистемному журналу, для чего все записи от одной транзакции связывают обратным списком (от конца к началу).

5. Поддержка языков БД

Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В ранних СУБД поддерживалось несколько специализированных по своим функциям языков. Чаще всего выделялись два языка

  • язык определения схемы БД (SDL - Schema Definition Language) и
  • язык манипулирования данными ( DML - Data Manipulation Language ).

SDL служил главным образом для определения логической структуры БД , т.е. той структуры БД , какой она представляется пользователям. DML содержал набор операторов манипулирования данными, т.е. операторов, позволяющих заносить данные в БД , удалять, модифицировать или выбирать существующие данные.

В современных СУБД обычно поддерживается единый интегрированный язык, содержащий все необходимые средства для работы с БД , начиная от ее создания, и обеспечивающий базовый пользовательский интерфейс с базами данных. Стандартным языком наиболее распространенных в настоящее время реляционных СУБД является язык запросов SQL (Structured Query Language ).

Язык SQL содержит специальные средства определения ограничений целостности БД . Опять же, ограничения целостности хранятся в специальных таблицах-каталогах, и обеспечение контроля целостности БД производится на языковом уровне, т.е. при компиляции операторов модификации БД компилятор SQL на основании имеющихся в БД ограничений целостности генерирует соответствующий программный код.

Специальные операторы языка SQL позволяют определять так называемые представления БД , фактически являющиеся хранимыми в БД запросами (результатом любого запроса к реляционной БД является таблица ) с именованными столбцами. Для пользователя представление является такой же таблицей, как любая базовая таблица , хранимая в БД , но с помощью представлений можно ограничить или наоборот расширить видимость БД для конкретного пользователя. Поддержание представлений производится также на языковом уровне.

Наконец, авторизация доступа к объектам БД производится также на основе специального набора операторов SQL . Идея состоит в том, что для выполнения операторов SQL разного вида пользователь должен обладать различными полномочиями. Пользователь , создавший таблицу БД , обладает полным набором полномочий для работы с этой таблицей. В число этих полномочий входит полномочие на передачу всех или части полномочий другим пользователям, включая полномочие на передачу полномочий. Полномочия пользователей описываются в специальных таблицах-каталогах, контроль полномочий поддерживается на языковом уровне.

Функциональные возможности СУБД

По степени универсальности различают два класса СУБД :

  • системы общего назначения - реализованные как программный продукт, способный функционировать на ЭВМ в определённой операционной системе и поставляемый пользователям как коммерческое изделие;
  • специализированные системы - создаваемые в случаях невозможности или не целесообразности использования СУБД общего назначения.

СУБД общего назначения - это сложные программные комплексы, предназначенные для выполнения всей совокупности функций, связанных с созданием и эксплуатацией БД информационной системы.

Рынок программного обеспечения ПК располагает большим числом разнообразных по своим функциональным возможностям коммерческих систем СУБД общего назначения.

СУБД - лидеры на рынке программ:

  • dBASE IV, компании Borland International;
  • Microsoft Access 2007;
  • Microsoft FoxPro 2.6 for DOS;
  • Microsoft FoxPro for Windows, Microsoft Corp:
  • Paradox for DOS 4.5:
  • Paradox for Windows, версия 4.5 Borland.

Производительность СУБД оценивается:

  • временем выполнения запросов;
  • скоростью поиска информации;
  • временем выполнения операций импортирования данных из других форматов;
  • скоростью выполнения таких операций как обновления, вставка, удаление данных;
  • максимальным числом параллельных обращений к данным в многопользовательском режиме;
  • временем генерации отчёта.

На производительность СУБД оказывают влияния 2 фактора:

  • правильное проектирование
  • построения БД.