Как написать собственную операционную систему. Руководство по созданию простой UNIX-подобной ОС. Исполнение сторонних программ

Если подходить по существу...

ОС - это такая штука, которая реализует многозадачность (обычно) и заведует распределением ресурсов между этими задачами и вообще. Нужно следить, чтобы задачи друг другу не могли вредить и работали в разных областях памяти и с устройствами работали по очереди, это хотя бы. А ещё надо предоставить возможность передавать сообщения от одной задачи к другой.

Ещё ОС, ежели имеется долговременная память, должна предоставлять доступ к ней: то есть предоставлять все функции для работы с файловой системой. Это минимум.

Почти везде самый первый загрузочный код должен писаться на ассемблере - там бывает куча правил, где оно должно быть, как должно выглядеть, что должно делать, и какой размер не превышать.

Для РС надо на асме писать бутлоадер, который будет вызываться BIOS и кой должен, не превышая четырёх с копейками сотен байт, что-то сделать и запустить основную ОС - передать управление основному коду, который в ближайшей же перспективе можно писать уже и на С.

Для ARM надо на асме делать таблицу прерываний (сброс, ошибки разные, прерывания IRQ, FIQ и пр.) и передачу управления в основной код. Хотя, во многих средах разработки такой код для почти любого контроллера имеется.

То есть, необходимо для этого:

  1. Знать ассемблер целевой платформы.
  2. Знать архитектуру процессора и всякие служебные команды и регистры, чтобы настроить его для работы в нужном режиме. В РС это переход в защищённый режим, например, или в 64битный режим... В ARM - настройка тактирования ядра и периферии.
  3. Знать, как именно будет запускаться ОС, куда и как нужно пихать свой код.
  4. Знать язык С - большой код на асме написать затруднительно без опыта, поддерживать его будет ещё труднее. Посему надо ядро писать на С.
  5. Знать принципы работы ОС. Ну, книжек на русском языке по этой теме много всяких, правда, не знаю, все ли они хорошие.
  6. Иметь много-много терпения и усидчивости. Ошибки будут и их надо будет искать и исправлять. А ещё надо будет очень много читать.
  7. Иметь много-много времени.

Далее. Допустим, вы что-то написали. Надо это дело тестировать. Либо надо устройство физическое, на коем будут идти эксперименты (отладочная плата, второй компьютер), либо эмулятор его. Второе обычно использовать и проще, и быстрее. Для PC, например, VMWare.

Статей по этой теме в интернете тоже достаточно, если хорошо поискать. А также есть множество примеров готовых ОС с исходниками.

Даже можно при большом желании посмотреть исходники старого ядра NT-систем (Windows), как отдельно (кое микрософтом выложено, с комментариями и разного рода справочными материалами), так и в совокупности со старыми же ОС (утекло).

Сразу говорю, не закрывайте статью с мыслями «Блин, еще один Попов». У него всего-то слизанная Ubuntu, а у меня все с нуля, включая ядро и приложения. Итак, продолжение под катом.

Группа ОС: вот .
Сначала я кину вам один скриншот.

Больше их нет, а теперь поподробнее о том, зачем я ее пишу.

Был теплый апрельский вечер, четверг. Я еще с детства мечтал написать ОС, как вдруг подумал: «Я же теперь знаю плюсы и асм, чего бы не воплотить мою мечту?». Загуглил сайты по этой тематике и нашел статью с Хабра: "Как начать и не бросить писать ОС ". Спасибо ее автору за ссылку на OSDev Wiki внизу. Я зашел туда и начал работу. Там были в одной статье все данные о минимальной ОС. Я начал собирать кросс-gcc и binutils, а потом все переписал оттуда. Видели вы бы мою радость, когда я увидел надпись «Hello, kernel World!» Я прямо со стула подпрыгнул и понял - я не сдамся. Я написал «консоль» (в кавычках, у меня не было доступа к клавиатуре), но потом решил написать оконную систему. В итоге она заработала, но доступа к клавиатуре у меня не было. А потом я решил придумать название, опираясь на X Window System. Загуглил Y Window System - она есть. В итоге назвал Z Window System 0.1, входящая в OS365 pre-alpha 0.1. И да, ее не видел никто, кроме меня самого. Потом я понял, как реализовать поддержку клавиатуры. Скрин самой первой версии, когда еще не было ничего, даже оконной системы:

В ней даже не двигался курсор текста, как вы видите. Затем я написал парочку простых приложений на основе Z. И вот релиз 1.0.0 alpha. Там были много вещей, даже меню системы. А файловый менеджер и калькулятор просто не работали.

Меня прямо терроризировал друг, которому важны одни красивости (Митрофан, сорри). Говорил «Запили VBE-режим 1024*768*32, запили, запили! Ну запили!». Ну я уже устал его выслушивать и все-таки запилил его. О реализации ниже.

Я сделал все моим загрузчиком, а именно GRUB"ом. С его помощью можно задать графический режим без осложнений путем добавления нескольких магических строчек в заголовок Multiboot.

Set ALIGN, 1<<0 .set MEMINFO, 1<<1 .set GRAPH, 1<<2 .set FLAGS, ALIGN | MEMINFO | GRAPH .set MAGIC, 0x1BADB002 .set CHECKSUM, -(MAGIC + FLAGS) .align 4 .long MAGIC .long FLAGS .long CHECKSUM .long 0, 0, 0, 0, 0 .long 0 # 0 = set graphics mode .long 1024, 768, 32 # Width, height, depth
А потом из структуры информации Multiboot я беру адрес фреймбуфера и разрешение экрана и пишу туда пиксели. VESA все сделали очень замороченно - цвета RGB надо вводить в обратном порядке (не R G B, а B G R). Я несколько дней не понимал - почему пиксели не выводятся!? В итоге я понял, что забыл поменять значения 16 цветовых констант с 0...15 на их RGB-эквиваленты. В итоге релизнул, заодно запилил градиентный фон. Потом я сделал консоль, 2 приложения и релизнул 1.2. Ах да, чуть не забыл - скачать ОС можно на

Оригинал: "Roll your own toy UNIX-clone OS"
Автор: James Molloy
Дата публикации: 2008
Перевод: Н.Ромоданов
Дата перевода: январь 2012 г.

Этот набор руководств предназначен для того, чтобы подробно показать вам, как запрограммировать простую UNIX-подобную операционную систему для архитектуры x86. В этих руководствах в качестве языка программирования выбран язык C, который дополняется языком ассемблера там, где это требуется. Цель руководств - рассказать вам о разработке и реализации решений, используемых при создании операционной системы ОС, которую мы создаем, монолитную по своей структуре (драйверы загружаются в режиме модулей ядра, а не в пользовательском режиме так, как происходит с программами), поскольку такое решение более простое.

Этот набор руководств очень практический по своей природе. В каждом разделе приводятся теоретические сведения, но большая часть руководства касается вопросов реализации на практике рассмотренных абстрактных идей и механизмов. Важно отметить, что ядро реализовано как учебное. Я знаю, что используемые алгоритмы не являются ни самыми эффективными по использованию пространства, ни оптимальными. Они, как правило, выбирались благодаря своей простоте и легкости понимания. Целью этого является дать вам правильный настрой и предоставить базис, на котором можно работать. Данное ядро является расширяемым и можно легко подключить лучшие алгоритмы. Если у вас возникнут проблемы, касающиеся теории, то есть много сайтов, на которых вам помогут с ней разобраться. Большинство вопросов, обсуждаемых на форуме OSDev, касаются реализации ("My gets function doesn"t work! help!" / "Моя функция не работает! Помогите!") и для многих вопрос по теории похож на глоток свежего воздуха. Ссылки можно найти в конце настоящего введения.

Предварительная подготовка

Чтобы скомпилировать и запустить код с примерами, как я предполагаю, потребуется только GCC, ld, NASM и GNU Make. NASM является ассемблером для x86 с открытым исходным кодом и многие разработчики ОС для платформы x86 выбирают именно его.

Однако нет никакого смысла просто выполнять компиляцию и запускать примеры, если нет их понимания. Вы должны понять, что кодируется, и для этого вы должны очень хорошо знать язык C, особенно то, что касается указателей. Вы также должны немного понимать ассемблер (в этих руководствах используется синтаксис Intel), в том числе то, для чего используется регистр EBP.

Ресурсы

Есть много ресурсов, если вы знаете, как их искать . В частности, вам будут полезны следующие ссылки:

  • RTFM! Руководства от intel - это находка.
  • Wiki страницы и форум сайта osdev.org.
  • На сайте Osdever.net есть много хороших руководств и статей и, в частности, Bran"s kernel development tutorials (Руководство по разработке ядра), на более раннем коде которого основывается настоящее руководство. Я сам использовал эти руководства для того, чтобы начать работу, и код в них был настолько хорош, что я не менял его в течение ряда лет.
  • Если вы не новичок, то ответы на многие вопросы вы можете получить в группе

Книга «Операционная система с 0 до 1» опубликована на GitHub и имеет более 2 000 звездочек и 100 форков. Как понятно из названия, прочитав её, вы сможете создать свою собственную операционную систему - и, пожалуй, мало что в мире программистов может быть круче.

Благодаря этой книге вы научитесь следующему:

  • Узнаете, как создать операционную систему на основе технической документации железа. В реальном мире это так и работает, вы не сможете использовать Google для быстрых ответов.
  • Поймёте, как компьютерные компоненты взаимодействуют друг с другом, от софта к железу.
  • Научитесь писать код самостоятельно. Слепое копирование кода не есть обучение, вы действительно научитесь решать проблемы. Кстати, слепое копирование еще и опасно.
  • Освоите всем привычные инструменты для низкоуровневой разработки.
  • Познакомитесь с языком ассемблера.
  • Выясните, из чего состоят программы и как операционная система запускает их. Небольшой обзор этой темы для любознательных мы давали в .
  • Разберётесь, как проводить отладку программы прямо на железе с GDB и QEMU.
  • Язык программирования C. Быстро освоить его можно, следуя .
  • Базовые знания Linux. Достаточно изучить на нашем сайте.
  • Базовые знания в физике: атомы, электроны, протоны, нейтроны, напряжение.

Аббревиатура "NT" маркетингом расшифровывается как "New Technologies", но в проектной документации, она означала совсем другое. Дело в том, что Windows NT разрабатывалась для нового, еще не выпущенного в 1988-м году, процессора Intel i860. Его кодовое название было "N10" (N T en).

Первая версия - Windows NT 3.1, вышла через 5 лет, в 1993 году. На этот момент в команде было уже 250 разработчиков.

Windows сегодня

  • 1 миллиард пользователей
  • 140 миллионов строк кода (включая тестовый код и инструментарий)
    Код Windows очень разный. Какие-то части написаны 20 лет назад, какие-то появились только в текущей версии. Например, код Web Services on Devices (WSD) в Windows Vista существует в своей первой версии, код GDI находится на завершающей стадии своего развития и почти не изменяется, код DirectX уже хорошо разработан, но активно изменяется и в настоящее время.
  • 8000 разработчиков
  • 36 языков локализации
  • 20 лет разработки

Разработка Windows

20-30 лет назад использовалась только одна методология программирования "Водопад". Она представляет собой последовательность:

Спецификации → Дизайн → Реализация → Тестирование → Поставка.

Но такая методология работает только для небольших проектов. Для такого продукта, как Windows сегодня, нужны другие методологии:

  • Product Cycle Model
  • Team Software Process
  • "Экстремальное программирование"

У всех этих методологий есть и преимущества и недостатки. В зависимости от размера команды и этапа развития компонента разные группы разработчиков Windows применяют разные методологии разработки.
Для Windows, как продукта в целом, используется Product Cycle Model:

  • Периоды по 3-4 месяца
  • Внутри периода - "водопад"

Самая главная проблема в разработке продукта такого масштаба состоит в том, что разработка требует времени. На начальном этапе решаются те проблемы, которые существуют в текущем времени и существующими средствами. Но единственная вещь, которая постоянна, это то, что все изменится. За годы разработки:

  • Требования изменятся
  • Возможности изменятся
  • График работ изменится
  • Проект изменится
  • Пользователи изменятся

Несмотря на то, что разные команды ведут разработку по-разному, существуют "универсальные" правила:

  • Выпуск промежуточных версий (milestones, beta, CTP) для широких масс тестеров
  • Выпуск внутренних сборок с короткими циклами (1 сутки)
  • Простота и надежность дизайна
  • Личные и командные вычитывания кода
  • Unit-тесты
  • Верификационные тесты (Build Verification Tests)
  • Любая промежуточная сборка должна быть качественной (то, что написано, должно работать)

От себя отмечу, что за месяц работы с Windows 7 build 6801 в качестве основной ОС на домашнем компьютере, у меня сформировалось положительное впечатление об этой сборки.

Весь процесс разработки Windows построен вокруг ежедневной сборки:

  • Это пульс продукта
  • Разработка никогда не прекращается
  • Ежедневное автоматическое тестирование
  • Интеграция на ранней стадии
  • Ответственность разработчиков
  • Очевидное состояние продукта

Когда-то раньше была только одна ветка исходного кода, и все разработчики вносили изменения прямо в неё. Сейчас команда разработчиков настолько большая, что это не работает. Поддерживается множество веток, среди которых есть основная - WinMain. У каждой лаборатории есть своя локальная ветка разработки, в которую интегрируются изменения. Проверенные изменения со временем интегрируются в WinMain.

Ежедневный цикл разработки:

  • 15:00 - Допущенные к интеграции изменения в систему контроля исходного кода
  • Сборка 6 версий (Free/Checked - x86, x64, IA64)
  • 18:00 - Новые версии доступны для тестирования
  • Новая версия устанавливается на несколько тысяч рабочих станций и серверов для тестирования
  • Автоматизированный стресс-тест
  • 05:00 - Протоколы тестов анализируются, сбои диагностируются
  • 09:00 - Сводные отчеты автоматически рассылаются командам
  • 09:30 - Сводное совещание руководителей команд для определения целей

Все участники проекта, включая самых высокопоставленных руководителей, используют промежуточные версии на своих рабочих (а обычно и домашних) компьютерах.

На чем пишется Windows?

  • C, C++, C#, Ассемблер (x86, x64, IA64)
    Ассемблеры применяются в довольно ограниченном объеме в тех ситуациях, когда без этого не обойтись
  • Visual Studio, Source Insight, build, nmake
  • Source Depot - система контроля исходных текстов
  • WinDbg, KD, NTSD - отладчики

Многие внутренние инструменты, такие как build, можно скачать с microsoft.com/whdc/devtools.

Изменения ядра Windows 7

Ядро Windows 7 претерпело следующие изменения:

  • Рефакторинг
    Почему в Windows нельзя удалить графическую подсистему?
    Ответ на этот вопрос с технической точки зрения состоит в том, что графическая подсистема в Windows не самостоятельна, это часть подсистемы Win32.
    В Windows 7 произошел рефакторинг многих низкоуровневых компонентов для того, чтобы разбить зависимости. Пользователям это не будет заметно, появятся только новые Dll, например kernel32.dll разделилась на kernel32.dll и kernelbase.dll.
    Это разбиение дало возможность выделить минимальное ядро, называемое MinWin (20 мегабайт на диске).
  • Поддержка EFI для x86 и x64 (как в Vista SP1)
    Многие производители пытаются избавиться от BIOS в пользу EFI.
  • Загрузка с VHD (виртуальный жесткий диск)
  • Параллельная инициализация устройств и старт сервисов
    При загрузке Windows довольно длительное время занимает построение дерева устройств. PNP-менеджер должен опрашивать драйверы шин (PCI, USB, FireWire и др.) на предмет того, какие устройства на них есть. И большую часть времени процессор ждет, пока устройства ответят (или нет). Ведь для того, чтобы определить устройства на шине нужно их опросить. Если они есть, то они ответят, а если нет, то приходится ждать, и процессор простаивает. Параллельное выполнение этих задач сокращает время загрузки.
  • Удаление Dispatcher lock из планировщика и PFN lock из менеджера памяти
    Последние несколько лет тактовые частоты процессоров не растут, и развитие идет в сторону увеличения кол-ва параллельно выполняющихся инструкций как на уровне одного ядра, так и на уровне системы (multicore). В связи с этим, была проведена большая работа по улучшению масштабирования.
    Два самых "горячих" лока, которые были в ядре, это Dispatcher lock и PFN lock были удалены.
    Dispatcher lock использовался планировщиком при изменении состояния потоков. Этот лок был удален, и состояние потока "ожидание" разделилось на несколько:
    • Ожидание: В процессе
    • Ожидание: Завершено
    • Ожидание: Отменено
    PFN lock использовался при изменении атрибутов физических страниц памяти. В мультипроцессорной системе каждый процессор запрашивал доступ к этому локу, что вело к большим затратам времени.
  • Поддержка 256 логических процессоров
    Раньше в Windows в качестве affinity mask использовалось машинное слово. Это было сделано из-за того, что так было легко находить свободные процессоры - каждый бит представляет собой процессор. Соответственно, в 32-битной системе поддерживалось 32 логических процессора, а в 64-битной - 64.
    В Windows 7 в результате перехода на сегментную модель affinity mask стала возможна поддержка 256 логических процессоров. Процессоры стали группироваться в группы/сегменты. В каждой группе могут находиться до 64-х процессоров. В результате получается обратная совместимость, старые программы "видят" только процессоры в одной группе, а новые программы, использующие новые интерфейсы, работают со всеми процессорами в системе.
  • Улучшенное энергосбережение: отключение процессорных сокетовСегодня стоит серьезная проблема энергосбережения не только перед владельцами ноутбуков, но и владельцами датацентров. В США 2% электроэнергии потребляются компьютерными датацентрами. Многие из них выключают часть своих серверов на время низкой активности пользователей (выходные дни).
    Было выяснено, что гораздо выгоднее отключать весь процессорный сокет, чем по одному ядру на нескольких, т.к. в этом случае можно отключить и всю инфраструктуру поддержки сокета (контроллер памяти).

Сопровождение Windows, обновления

Раньше обновления зачастую были кумулятивными(накапливаемыми). Это означало, что если ошибочный код содержался в раннем обновлении компонента, то и поздние версии будут содержать этот код. Но не всем пользователям нужны все обновления, у них разная конфигурация.

Теперь после выпуска (RTM) в Windows существует 2 версии исходного кода:

  • RTM GDR (General Distribution Release)
    Включает те немногие изменения, которые предназначены для всех. В основном исправления безопасности.
  • RTM LDR (Limited Distribution Release)
    Во время установки обновления клиент Windows Update выбирает нужную ему ветку и устанавливает код из нее.

Создание обновления безопасности

Работа по созданию обновления безопасности начинается с обнаружения уязвимости. Есть масса разных способов обнаружения - внутренние команды безопасности, партнеры безопасности, разработчики. Когда уязвимость обнаружена, начинается 2 параллельных процесса:

  • Разработка исправления для всех платформ
  • Поиск "вариантов"
    Масштабный поиск похожих вариантов уязвимостей на всех платформах. Поиск не идентичного кода, а похожего.

После разработки исправления, начинаются проверки его кода. Когда они завершатся, исправление интегрируется в сборку, и сборка отправляется на тестирование:

  • Ручное и автоматическое тестирование компонент
  • Автоматическое тестирование искажений форматов файлов, сетевых компонент и т.п. (больше миллиона вариантов)
  • Тестирование системы в целом, включая тестирование обратной совместимости

Только исправления, удовлетворяющие всем критериям качества, допускаются к выпуску на Windows Update и Download Center.

  • Вперёд >