Устройство и принцип работы газоразрядных дисплеев. Плазменная панель против LCD-телевизора: что лучше? ("Plasma vs. LCD: Which is Better?" - Phil Conner)

Plasma Display Panel (PDP)

Всего лишь пятнадцать-двадцать лет назад лет назад писатели-фантасты в один голос предрекали появление в будущем огромных и абсолютно плоских телевизионных экранов. И вот теперь сказка наконец-то стала былью, и такой экран может купить любой желающий.

Устройство плазменных панелей

Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения. В свою очередь это излучение возникает при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий “шнур”, состоящий из ионизированных молекул газа (плазмы). Поэтому-то газоразрядные панели, работающие на этом принципе, и получили название “газоразрядных ” или, что тоже самое – “плазменных ” панелей.

Конструкция

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными поверхностями. В качестве газовой среды обычно используется неон или ксенон.

Разряд в газе протекает между прозрачным электродом на лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение, которое, в свою очередь, инициирует видимое свечение люминофора.

В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости.

Люминофоры излучают один из основных цветов: красный , зелёный или синий . Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично.

Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному.

Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова , поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

Зелёный : Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
Красный : Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
Синий : BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280×768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

В ЖК-панелях принцип формирования картинки принципиально иной — там источник света находится позади матрицы, а для разделения цветов на RGB используются фильтры.

Почему плазменные панели лучше

Во-вторых , плазменная панель исключительно универсальны и позволяют использовать её не только в качестве телевизора, но и как дисплей персонального компьютера с большим размером экрана. Для этого все модели плазменных панелей помимо видеовхода (как правило, это обычный AV вход и вход S-VHS) оборудуются еще и VGA-входом. Поэтому такая панель будет незаменима при проведении презентаций, а также при использовании в качестве многофункционального информационного табло при ее подключении к выходу персонального компьютера или ноутбука. Ну, а поклонники домашнего мультимедиа и компьютерных игр будут просто в восторге: только представьте себе насколько выигрышнее будет выглядеть по сравнению с 17″ монитором на 42″ экране изображение, к примеру, кабины космического звездолета или виртуальное поле боя с космическими пришельцами!

В-третьих , “картинка” плазменной панели по своему характеру очень напоминает изображение в “настоящем” кинотеатре. Благодаря этому своему “кинематографическому” акценту плазма сразу же полюбилась поклонникам “домашнего кино” и прочно утвердилась как кандидат N1 в качестве высококачественного средства отображения в домашних кинотеатрах высокого класса. Тем более что размера экрана в 42″ в большинстве случаев оказывается вполне достаточно. Очевидно в расчете на “кинотеатральное” применение большинство плазменных панелей выпускается с форматом изображения 16:9, ставшем de-facto стандартом для систем домашнего театра.

В-четвертых , при столь солидном экране плазменные панели имеют исключительно компактные размеры и габариты. Толщина панели с размером экрана в 1 метр не превышает 9-12 см, а масса составляет всего 28-30 кг. По этим параметрам сегодня ни один другой тип средств отображения не может составит плазме хоть какую-то конкуренцию. Достаточно сказать, что цветной кинескоп со сравнимым размером экрана имеет глубину 70 см и весит более 120-150 кг! Проекционные телевизоры с обратной проекцией также особой стройностью не отличаются, а телевизоры с фронтальной проекцией, как правило, имеют малые яркости изображения. Светотехнические же параметры плазменных PDP панелей исключительно высоки: яркость изображения свыше 700 кд/м 2 при контрастности не менее 500:1. И что очень важно, нормальное изображение обеспечивается в чрезвычайно широком угле зрения по горизонтали: в 160О. То есть уже сегодня PDP вышли на уровень самых передовых рубежей качества, достигнутых кинескопами за 100 лет своей эволюции. А ведь большеэкранные плазменные панели серийно выпускаются менее 5 лет, и они находятся в самом начале пути своего технологического развития.

В-пятых , плазменные панели чрезвычайно надежны. По данным фирмы Fujitsu их технический ресурс составляет не менее 60 000 часов (у очень хорошего кинескопа 15 000-20 000 часов), а процент брака не превышает 0.2%. То есть на порядок меньший общепринятых для цветных кинескопных телевизоров 1.5-2 %.

В-шестых , PDP практически не подвержены воздействию сильных магнитных и электрических полей. Это позволяет, к примеру, использовать их в системе домашнего театра совместно с акустическими системами с неэкранированными магнитами. Иногда это может быть важным, так как в отличие от кинотеатральной акустики многие “обычные” HI-FI колонки выпускаются с неэкранированной магнитной цепью. В традиционном домашнем кинотеатре на основе телевизора использовать эти колонки в качестве фронтальных очень затруднительно ввиду их сильного влияния на кинескоп телевизора. А в AV-системе на основе PDP – сколько угодно.

В-седьмых , благодаря малой глубине и относительно небольшой массе плазменные панели легко разместить в любом интерьере и даже повесить на стену в удобном для этого месте. С другим типом дисплея подобный фокус вряд ли удастся.

Прочие достоинства плазменной панели

  • Большая диагональ . Производить ЖК-матрицы больших диагоналей очень дорого и потому экономически невыгодно. С плазменными панелями всё ровно наоборот.
  • Панель не мерцает . Не мерцает, а значит не утомляет глаза, в отличие от обычных ЭЛТ-телевизоров с частотой обновления 50 Гц.
  • Лучшая цветопередача . Современные плазменные телевизоры способны отображать до 29 миллиардов цветовых оттенков. Это по праву считается одним из основных преимуществ плазмы.
  • Большие углы обзора . Ячейки плазменной панели светятся сами, им не нужны никакие «затворы», как в ЖК-панелях, регулирующие количество проходящего света. Поэтому угол обзора плазменной панели — почти 180 градусов во всех направлениях.
  • Время отклика . Время отклика плазменной панели аналогично ЭЛТ, то есть гораздо меньше, чем у любого ЖК-телевизора.
  • Яркость и контрастность . Контрастность плазменных панелей значительно выше, чем у ЖК-телевизоров. У современной панели она может достигать 10000:1. А яркость плазм абсолютно равномерна, поскольку подсветка в традиционном её понимании отсутствует.
  • Компактные габариты . Среднестатистическая плазменная панель не толще 10 см. Её можно легко прикрутить к стене, заказав специальный кронштейн.

Ложка дёгтя

  • Остаточное свечение . Эффект остаточного свечения характерен только для плазменных панелей. Это связано с тем, что регулярно активируемый газ излучает больше ультрафиолетового цвета. Неравномерность уровня яркости возникает, когда наработка разных ячеек от момента включения сильно отличается друг от друга. Говоря проще, если вы долго смотрите один и тот же канал, то его знак будет некоторое время просвечиваться на экране после переключения канала. Производители панелей, как могут, борются с этим недостатком, применяя скринсерверы и другие более хитрые технологии.
  • Деградация люминофора . Этот тот же процесс, что можно наблюдать и в обычных ЭЛТ-телевизорах. Время жизни панели исчисляется до потери половины яркости экрана. Для плазмы последнего поколения – это примерно 60000 часов.
  • Зернистость . Дешёвые плазменные телевизоры без поддержки HD страдают этим эффектом больше всего. Обращайте на него внимание при выборе бюджетной модели, и, если вдруг он будет раздражать, — отложите покупку до тех пор, пока не сможете приобрести модель более высокого класса.
  • Шумность . Большая часть выпускаемых сегодня плазм имеет вентиляторы охлаждения. Имейте это в виду и обязательно послушайте, насколько сильно шумит панель перед покупкой.

Таким образом, единственным серьезным на сегодня недостатком плазменных панелей по большому счету является только их большая цена. Впрочем по сравнению со стоимостью других устройств отображения информации с аналогичным размером экрана их относительная цена в пересчете на 1 см (или дюйм) диагонали изображения оказывается не столь большой.

Разбор характеристик

Принцип дальнейшего повествования будет таков: мы возьмём типовую табличку технических характеристик плазменной панели и пройдёмся по тем её строкам, на которые стоит обратить внимание. Итак:

Диагональ, разрешение

Диагонали плазменных панелей начинаются с 32-дюймов и заканчиваются на 103-х. Из всего этого диапазона, как уже было сказано выше, в России пока лучше всего продаются 42-дюймовые панели с разрешением 853×480 точек. Это разрешение называется EDTV (Extended Definition Television) и подразумевает под собой «телевидение повышенной чёткости». Такого телевизора будет достаточно для комфортного времяпрепровождения, поскольку в России пока не существует бесплатного телевидения высокой чёткости (High Definition TV — HDTV). Однако HDTV-телевизоры, как правило, технически более совершенны, лучше обрабатывают сигнал и даже способны «подтягивать» его до уровня HDTV. Получается, конечно, не очень, но эти попытки ценны сами по себе. К тому же, в магазинах уже можно купить фильмы, записанные в формате HD DVD.

Покупая HDTV-телевизор, обратите внимание на формат поддерживаемого сигнала. Самый распространённый — 1080i, то есть, 1080 строк с чересстрочным чередованием. Чересстрочное чередование принято считать не очень хорошим, поскольку будут заметны зубчики по краям объектов, но этот недостаток нивелируется высоким разрешением. Поддержка более совершенного формата 1080p с прогрессивной развёрткой пока встречается только на очень дорогих телевизорах последнего, девятого поколения. Существует также альтернативный формат 1080i — это 720p с меньшим разрешением, но зато с прогрессивной развёрткой. На глаз различие между двумя картинками найти будет сложно, так что при прочих равных 1080i предпочтительнее. Впрочем, большое количество телевизоров одновременно поддерживают и 720p, и 1080i, так что в этом плане никаких проблем с выбором у вас возникнуть не должно.

Пару слов скажем о различных технологиях улучшения изображения. Технологически так сложилось, что качество картинки панели в немалой степени зависит и от разнообразных программных ухищрений. У каждого производителя они свои, и бывает, что только их грамотное функционирование определяет все видимые глазу отличия в картинке между двумя телевизорами разных марок, но одной стоимости. Однако выбирать телевизор по количеству этих технологий всё же не стоит — лучше всмотреться в качество их работы, благо любоваться плазмами можно в любом нормальном магазине видеотехники сколько угодно времени.

Выбирая диагональ, в первую очередь имейте в виду – чем она больше, тем дальше от телевизора нужно сидеть. В случае 42-дюймовой панели ваш любимый диван должен быть удалён от неё на расстояние не менее трёх метров. Можно, конечно, сесть и ближе, но особенности формирования изображения на панели вас наверняка будет раздражать и мешать просмотру.

Соотношение сторон

Все плазменные телевизоры имеют панели с . Стандартная телевизионная картинка 4:3 на таком экране будет смотреться нормально, просто неиспользуемая площадь экрана по бокам изображения будет залита чёрным. Или серым, если телевизор позволяет менять цвет заливки. Телевизор может попробовать растянуть изображение на весь экран, но результат этой операции, как правило, выглядит печально. В некоторых магазинах плазмы «вещают» именно в таком режиме — видимо, персоналу просто лень искать в меню галочку отключения функции масштабирования. В в России уже началось. По умолчанию такое соотношение сторон используется только в HDTV.

Яркость

Существуют две характеристики панели, связанные с яркостью, — это яркость панели и яркость всего телевизора. Яркость панели нельзя оценить на готовом продукте, потому что перед ней всегда стоит светофильтр. Яркость же телевизора — это наблюдаемая яркость экрана после прохождения света через фильтр. Фактическая яркость телевизора никогда не превышает половины яркости панели. Однако в характеристиках телевизора указывается изначальная яркость, которую вы никогда не увидите. Это первый маркетинговый трюк.

Ещё одна особенность цифр, указываемых в спецификациях, связана с методом их получения. В целях защиты панели её яркость в расчёте на точку уменьшается пропорционально увеличению суммарной площади засветки. То есть если вы видите в характеристиках значение яркости 3000 кд/м2, знайте — она получается только при небольшой засветке, например, когда на чёрном фоне отображается несколько белых букв. Если инвертировать эту картинку, мы получим уже, например, 300 кд/м2.

Контрастность

С этим показателем также связаны две характеристики: контрастность при отсутствии окружающего света и в присутствии оного. Значение, указываемое в большинстве спецификаций, — это контрастность, замеренная в тёмной комнате. Таким образом, в зависимости от освещения, контрастность может падать с 3000:1 до 100:1.

Интерфейсные разъёмы

Подавляющее число плазменных телевизоров имеет, как минимум, SCART, VGA, S-Video, компонентный видеоинтерфейс, а также обычные аналоговые аудиовходы и выходы. Рассмотрим эти и другие разъёмы подробнее:

  • SCART — количество этих разъёмов может достигать трёх. Одно время они считались наиболее совершенными, пока не появился HDMI. Через SCART одновременно передаются аналоговый видеосигнал и стереозвук.
  • HDMI — кто-то может назвать это эволюционным преемником SCART. Через HDMI можно передавать HD-сигнал в разрешении 1080p вместе с восьмиканальным звуком. Благодаря выдающейся пропускной способности и миниатюрности разъёма, интерфейс HDMI поддерживают уже некоторые видеокамеры и DVD-плееры. А компания Panasonic поставляет со своими плазмами пульт с функцией HDAVI Control, позволяющей управлять не только телевизором, но и другой техникой, подключённой к нему через HDMI.
  • VGA — это обычный компьютерный аналоговый разъём. Через него к плазме можно подключить компьютер.
  • DVI-I — цифровой интерфейс для подключения всё того же компьютера. Однако встречается и другая техника, работающая через DVI-I.
  • S-Video — чаще всего используется для подключения DVD-проигрывателей, игровых приставок и, в редких случаях, компьютера. Обеспечивает хорошее качество изображения.
  • Компонентный видеоинтерфейс — интерфейс для передачи аналогового сигнала, когда каждая его составляющая идёт по отдельному кабелю. Благодаря этому компонентный сигнал — самый качественный их всех аналоговых. Для передачи звука используются аналогичные RCA-разъемы и кабели — каждый канал «бежит» по своему проводу.
  • Композитный видеоинтерфейс (на одном разъёме RCA) — в противовес компонентному обеспечивает наихудшее качество передачи сигнала. Используется один кабель и, как результат, — возможна потеря цветности и чёткости изображения.

Акустическая система

Не стоит питать иллюзий, что встроенные в телевизор маломощные динамики могут звучать хорошо. Даже если производитель клянётся в реализации многочисленных «улутшательных» технологии, звучать плазма будет на уровне, достаточном разве что для просмотра новостей. Впрочем, некоторые наиболее честные производители на наличии колонок внимания потребителя даже не акцентируют — да, они есть, но не более того. Насладиться настоящим звуком позволят только внешние и не самые дешёвые акустические системы.

Энергопотребление

Энергопотребление плазменного телевизора меняется в зависимости от отображаемой картинки. Поэтому не пугайтесь, если вам скажут что скромная 42-дюймовая панель «ест» 360 Вт. Уровень, указываемый в спецификации, отражает максимальное значение. При полностью белом экране потреблять плазменная панель будет уже 280 Вт, а при полностью чёрном — 160 Вт.

В заключение

В заключение хочется дать пару советов. Самый главный — тщательно проверяйте панель на наличие «битых» пикселей, а точнее, точек, которые постоянно горят одним цветом. В случае обнаружения — требуйте замены, поскольку это считается недопустимым браком вне зависимости от количества таких пикселей. Не дайте недобросовестному продавцу провести себя — до пяти «битых» пикселей формально допустимы лишь для ЖК-панелей, да и то не самого высокого класса. И ещё имейте в виду, что некоторые модели телевизоров поставляются вместе с напольной подставкой, то есть, тумбочкой. Этот комплект выйдет дороже, но зато подставка будет точно гармонировать с телевизором и обеспечит ему хорошую устойчивость.

Общая оценка материала: 4.9

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Отец видеозаписи Александр Понятов и AMPEX

Наверное, для многих из вас такие выражения, как плазменные технологии, плазменные мониторы звучат с некой долей экзотичности, а многие, наверняка, даже и не представляют себе, что это такое. И это понятно. Ведь плазменные мониторы на сегодняшний день - большая редкость, можно даже сказать роскошь, но, в любом случае, плазменные технологии – это очень передовые и очень перспективные технологии, которые сейчас находятся на стадии совершенствования. А, как известно, всё новое и совершенное всегда пробивает себе дорогу в жизнь. И, возможно, в скором будущем мы уже будем видеть плазменные мониторы абсолютно везде (в аэропортах, на вокзалах, в гостиницах и отелях, в различных залах для презентаций, и, может быть, даже у вас дома), и они уже не будут являться такой роскошью, которой являлись до сих пор.

Давайте всё-таки более подробно рассмотрим, что же такое плазменные мониторы или, другими словами, PDP-мониторы (PDP - plasma display panel), для чего они нужны, какими преимуществами и недостатками обладают по сравнению с другими видами мониторов и почему до сих пор для многих являются экзотикой?

Прежде всего, хочется отметить, что плазменные мониторы – это, как правило, мониторы с очень большой диагональю (40 – 60 дюймов), с совершенно плоским экраном, а сами мониторы являются очень тонкими (толщина их обычно не превышает 10 см) и одновременно очень лёгкими. И при всех этих достоинствах плазменные мониторы позволяют сохранить качество изображения на очень высоком уровне. А если учесть, что перед вашими глазами находится монитор такой величины, да который еще и показывает весьма недурно, то, я думаю, что с таким монитором вы никогда не будете скучать, например, при просмотре фильмов на презентациях. Это, на мой взгляд, действительно, очень эффектный и модный монитор.

Действительно, плазменная панель является одной из перспективных технологий плоских дисплеев. Эта технология используется уже достаточно давно, но довольно высокая потребляемая мощность и просто гигантские габаритные размеры дисплеев позволяли до сих пор использовать их разве что на улице в качестве огромных рекламных щитов с видеоизображением. Сегодня многие ведущие производители электроники имеют в своем ассортименте качественные плазменные дисплеи для профессионального и даже бытового применения. По качеству изображения и масштабным характеристикам современные плазменные дисплеи не имеют себе равных. Ведь они способны обеспечить, в силу особенностей плазменного эффекта, повышенную чёткость изображения, яркость (до 500 Кд/кв.м), контрастность (до 400:1) и очень высокую сочность цветов. Все эти качества наряду с отсутствием дрожания являются большими преимуществами таких мониторов. Плазменные мониторы обладают наряду с вышеперечисленными особенностями еще и выдающимися потребительскими качествами: наименьшей толщиной, что, несомненно, поможет вам сэкономить полезное пространство помещения (вы сможете разместить свой монитор где угодно: на полу, на стене и даже на потолке); малым весом, что упрощает задачу безопасного и удобного размещения и транспортировки монитора; самым большим углом видимости изображения (около 160 градусов). Кстати, угол видимости изображения вообще является очень важным параметром монитора. Представьте себе, что вы смотрите на монитор не под прямым углом, а немножечко со стороны, и вдруг изображение прямо на ваших глазах начинает расплываться, и в определённый момент уже совершенно ничего нельзя разобрать на экране. Такой недостаток присущ, например, многим LCD-мониторам. Плазменные же мониторы из-за большого предельного угла обзора лишают вас «удовольствия» понаблюдать за процессом «растворения» изображения прямо у вас перед глазами. Ко всему выше сказанному, наверное, стоит также добавить то, что плазменные мониторы совершенно не создают электромагнитных полей, что служит гарантией их безвредности для вашего зрения и здоровья в целом. Вспомните, например, об излучении от мониторов с электронно-лучевой трубкой. Я думаю, что никто из вас не мечтает остаться «без глаз» после нескольких лет работы за плохим монитором. Эти мониторы также совершенно не страдают от вибрации. Чего, к сожалению, нельзя сказать о CRT-мониторах с апертурной решёткой. Так что вы, в случае необходимости, сможете расположить такой монитор в зонах частых подземных толчков или, например, вблизи железной дороги. Кстати, плазменный монитор очень неплохо будет смотреться в качестве табло на современных железнодорожных вокзалах и в аэропортах в качестве информационного видео-табло.

Необходимо также отметить и стойкость плазменных мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях. Ведь даже самый мощный магнит, помещенный рядом с таким монитором, никак не способен повлиять на качество изображения. Представляете, насколько это важно в условиях промышленного производства. А что касается бытового уровня, так вы без всякого опасения сможете разместить рядом со своим монитором любые акустические колонки, не боясь увидеть на экране различные пятна, как результат намагничивания экрана (напомню, что влияние электромагнитных полей очень сильно ощущается в CRT-мониторах). Так что, этот момент придаёт ещё большую свободу вашим действиям по оформлению вашего монитора и «обвешиванию» его всякими интересными «штучками» в стиле навесных колонок.

К положительным качествам плазменных мониторов также можно добавить их небольшое время регенерации (время между посылкой сигнала на изменение яркости пикселя и фактическим её изменением). Это позволяет использовать такие мониторы для просмотра видео, что в свою очередь делает такие мониторы просто незаменимыми помощниками на различных видеоконференциях и презентациях. А если ко всему выше приведённому списку достоинств добавить также отсутствие искажений изображения и проблем сведения электронных лучей и их фокусировки, которые присущи всем CRT-мониторам, то, наверняка, многие из вас скажут: «Да это же просто идеальные мониторы!». Да, действительно, мониторы и впрямь неплохие, и, возможно, в будущем они станут достойной заменой обычных традиционных мониторов. Но не стоит преждевременно торопиться с выводами. Ведь в любой, даже самой совершенной технологии существуют свои подводные камни, которые нужно отшлифовывать. Ну и, конечно, плазменная технология не лишена недостатков, которые, собственно говоря, сейчас и являются главными препятствиями на пути продвижения плазменных мониторов на мировой рынок.

Давайте рассмотрим самые основные недостатки плазменных мониторов. Итак, самым основным недостатком, который напрямую сказывается на низкой покупательской способности этих мониторов, является их очень высокая цена. Действительно, ведь цена среднего плазменного монитора сейчас составляет около $10000. Так что потенциальным покупателем такого монитора на сегодняшний день может стать либо какая-нибудь довольно крупная компания для проведения различных презентаций и видеоконференций, а может быть просто для поднятия своего собственного имиджа, либо частное лицо, для которого вопрос цены считается второстепенным по отношению к удобству использования и престижности устройства. Хотя, с другой стороны, эти мониторы сами формируют новую потребительскую нишу, будучи практически идеальным средством для демонстрации рекламных роликов или передачи общественной информации. Так что ценовой фактор сейчас уже для многих пользователей не играет решающую роль при выборе такого монитора.

Но, к сожалению, на этом недостатки плазменных мониторов не заканчиваются. Также очень существенным недостатком плазменного монитора является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора. Этот недостаток связан уже непосредственно с самой технологией получения изображения с использованием плазменного эффекта. Этот факт приводит к увеличению эксплуатационных затрат на данный монитор, но самое главное – это то, что высокое энергопотребление делает невозможным использование таких мониторов, например, в портативных компьютерах. Т.е. такому монитору однозначно требуется питание от городской сети. Так что невозможность использования аккумуляторов для питания таких мониторов вводит некие ограничения на область их использования. Но с учётом всеобщей электрификации можно отнести данный недостаток в разряд незначительных.

Ещё одним недостатком плазменных мониторов является довольно низкая разрешающая способность, обусловленная большим размером элемента изображения. Но, учитывая тот факт, что эти мониторы в основном используются на презентациях, конференциях, а также в качестве различных информационных и рекламных табло, то понятно, что основная масса зрителей находится на значительном расстоянии от экранов этих мониторов. А это способствует тому, что видимая на маленьком расстоянии зернистость просто исчезает на большом расстоянии. На такие мониторы действительно нужно смотреть на расстоянии. Да и не к чему близко подходить к здоровому монитору, ведь вы должны охватить своим зрением сразу весь экран, чтобы вам не пришлось усиленно «болтать» головой в разные стороны, дабы ухватить отрывки изображения в разных частях экрана. В связи с вышесказанным, довольно низкое разрешение, как правило, не является существенным недостатком плазменных мониторов.

Ещё одним довольно значимым недостатком плазменных мониторов является сравнительно небольшой срок службы. Дело в том, что это связано с довольно быстрым выгоранием люминофорных элементов, свойства которых быстро ухудшаются, и экран становится менее ярким. Для примера, уже через несколько лет интенсивной эксплуатации яркость свечения экрана может снизиться раза в два. Поэтому срок службы плазменных мониторов ограничен и составляет 5-10 лет при довольно интенсивной эксплуатации или около 10000 часов. И именно из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экранов для отображения информации. Особенно эти мониторы популярны на презентациях, ведь в этом случае срок службы монитора значительно увеличивается, т.к. он сравнительно редко находится в работе в отличие, например, от плазменного монитора, исполняющего роль круглосуточного рекламного видео-щита. Хотя, если хорошо подумать, 5-10 лет службы при интенсивной эксплуатации – это не так уж и мало. Я, например, с трудом представляю себе, например, монитор домашнего компьютера, который бы безотказно проработал больше десяти лет. А если ещё учесть тот факт, что сейчас различные фирмы-производители плазменных мониторов стараются сделать всё для увеличения срока службы мониторов, то и этот недостаток плазменных мониторов уже в скором будущем просто исчезнет.

Ещё одним недостатком плазменных мониторов является тот факт, что их размер обычно начинается с сорока дюймов. Это говорит о том, что производство дисплеев меньшего размера экономически нецелесообразно, поэтому мы вряд ли увидим плазменные панели, скажем, в портативных компьютерах. Но данный недостаток плазменных мониторов можно расценивать, как его преимущество. Ведь именно с появлением этих мониторов был преодолён барьер максимально возможной диагонали плоских мониторов. Ведь обычные LCD-мониторы просто по своей технологии производства не могут быть выполнены с большой диагональю. А технология производства плазменных мониторов позволяет сейчас производить мониторы с диагональю до 63 дюймов. Представляете, какой гигант? И я уверен, что и это ещё не предел. А ведь всё это при маленькой его толщине! Но в случае с монитором такой огромной диагонали советую вам быть предельно внимательными, аккуратными и осторожными при его транспортировке. И не забывайте, что он не любит сильных вибраций, да и механические повреждения, я думаю, ему будут совершенно ни к чему. Так что, его лучше всего перевозить в специальной коробке с пенопластом, предназначенной именно для этой цели.

Еще один, наверное, последний неприятный эффект, возможный у плазменных мониторов – это интерференция. По сути дела, интерференция – это взаимодействие света разной длинны волны, излучаемого из соседних элементов экрана. В результате этого явления в определённой мере ухудшается качество изображения. Хотя, если учесть ту яркость, контрастность и сочность цветов, то результат проявления интерференции на мониторе будет едва ли заметен. И обычный непрофессиональный пользователь наверняка просто не заметит никаких отклонений в качестве изображения вашего монитора.

Ну вот, пожалуй, и все недостатки, присущие плазменным мониторам. И если теперь сопоставить все достоинства и недостатки плазменных мониторов, то налицо существенное преобладание всевозможных достоинств. К тому же, вы, наверняка, заметили, как мы в результате рассуждений многие из недостатков с лёгкостью отметали в сторону, а в некоторых из них вообще увидели положительные моменты. Да ещё не нужно забывать, что технический прогресс не стоит на месте, и в условиях жёсткой конкуренции фирмы-производители плазменных мониторов стремятся постоянно повышать качество выпускаемой продукции. Тем самым сейчас постоянно разрабатываются всё новые и новые технологии, способствующие снижению количества недостатков и вместе с тем снижению стоимости плазменных мониторов. Вот, например, компания Philips объявила цену на свой новый монитор Philips Brilliance 420P ниже загадочного барьера в 10000$. Этот факт уже наглядно показывает, что в данный момент чётко прослеживается тенденция снижения цен на плазменные мониторы, что, естественно, делает их доступными более широкому кругу потенциальных покупателей и открывает новые горизонты для использования плазменных мониторов.

Вообще плазменный эффект известен науке довольно давно: он был открыт еще в 1966 году. Неоновые вывески и лампы дневного света - лишь некоторые виды применения этого явления свечения газов под воздействием электрического тока. А вот производство плазменных мониторов для массового потребительского рынка начинается только сейчас. Это связано и с дороговизной таких мониторов, и с их ощутимой «прожорливостью». И хотя технология изготовления плазменных дисплеев несколько проще, чем жидкокристаллических, тот факт, что она еще не поставлена на поток, способствует поддержанию высоких цен на этот пока экзотический товар.

Каким же образом плазменную технологию учёным удалось применить для создания мониторов? Плазменная технология используется при создании сверхтонких, плоских экранов. Лицевая панель такого экрана состоит из двух плоских стеклянных пластин, расположенных на расстоянии около 100 микрометров друг от друга.


Между этими пластинами находится слой инертного газа (как правило, смесь ксенона и неона), на который воздействует сильное электрическое поле. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники - электроды, а на заднюю - ответные проводники. В современных цветных дисплеях переменного тока задняя стенка имеет микроскопические ячейки, заполненные люминофорами трех основных цветов (красного, синего и зеленого), по три ячейки на каждый пиксель. Именно при помощи смешения в определённых пропорциях этих трёх цветов и получаются различные оттенки цветного изображения в каждой точке экрана монитора. Газ, который находится между двух пластин, переходит в плазменное состояние и излучает ультрафиолетовый свет. Благодаря необычайной цветовой четкости и высокой контрастности перед вами возникает просто очень качественное изображение, которое, поверьте мне, порадует глаз даже самого дотошного зрителя.

Давайте теперь поговорим немного о компаниях и рынках, работающих в сфере производства и предложения плазменных мониторов. Конечно, сейчас очень многие компании из разных стран мира выставили на рынок свои модели плазменных мониторов, но несомненным лидером по количеству и качеству предложенных моделей являются различные Японские компании. Такие, например, как Hitachi, Sharp, NEC, Toshiba, JVC, Fujitsu, Mitsubishi, Sony, Pioneer и др. В условиях жёсткой конкуренции практически каждый производитель плазменных панелей добавляет к классической технологии собственные разработки, улучшающие цветопередачу, контрастность изображения, а также расширяющие спектр функциональных возможностей монитора. В условиях такой борьбы за лидирующее место на арене плазменных мониторов на потребительском рынке постоянно появляются всё новые и новые модели мониторов различных фирм, которые с каждым разом не только становятся качественнее, но и постоянно падают в цене, что в лучшую сторону сказывается на покупательской способности всё большего числа пользователей. Вообще, на мой взгляд, чем жёстче будет конкуренция среди лидеров по производству плазменных мониторов (а, уж поверьте мне, на сегодняшний день жёстче уже некуда), тем более качественную и дешёвую продукцию будем получать мы с вами.

Признанным лидером плазменной технологии является компания Fujitsu, которой накоплен самый большой опыт в этой области и, кроме того, этой компанией вложено огромное количество денег в разработку новых моделей мониторов. В 1995 году Fujitsu вышла на рынок с новой коммерческой серией плазменных дисплеев Plasmavision, которую совершенствует и по сей день.
Компании NEC и Thomson подтвердили решимость развивать сотрудничество в области разработки технологи плоского плазменного дисплея. Результатом такого сотрудничества является появление на потребительском рынке новой модели Thomson, обдающей более высокой разрешающей способностью, благодаря высококачественным панелям NEC. Обе компании намерены также продолжать и самостоятельные разработки.
Pioneer предлагает предназначенные для профессионального применения плазменные панели с, пожалуй, самым широким набором технологий улучшения изображения. Рынок плазменных дисплеев обязан компании Pioneer технологией сверхчеткого изображения.
Корпорация Mitsubishi выпускает сразу несколько линий плазменных мониторов с диагональю 40 дюймов: серию телевизоров DiamondPanel и серию презентационных панелей Leonardo.

В общем, каждая компания «крутится» как хочет и как может, стремясь обойти своих конкурентов. И это нормально. Ведь всё это способствует улучшению качества и снижению цены на плазменные мониторы.
По данным компании Display Search, занимающейся исследованием рынка плоскоэкранных дисплеев скачок продаж в 2001 г. по сравнению с 2000 г. составил 176% (152000 единиц в 2000, 420000 единиц в 2001 году), хотя приведенные исследования касаются, прежде всего, американского рынка плазменных дисплеев. Цифры для европейского рынка и, тем более, для российского выглядят значительно скромнее, однако динамика развития отрасли совпадает.

В любом случае, налицо перспективность развития рынка плазменных мониторов. И сейчас плазменные технологии по праву можно назвать технологиями 21 века. Ведь действительно можно проследить тенденцию вытеснения традиционных мониторов плазменными. Хотя пока о полном вытеснении говорить ещё очень рано, всё равно, например, налицо вытеснение видеопроекторов для домашних кинотеатров плазменными мониторами. В плазменных мониторах, в отличие от видеопроекторов домашних кинотеатров нет необходимости располагать проецирующее устройство на расстоянии от экрана - с активной технологией отображения информации все размещено в плоском корпусе. Также стоит отметить то, что изображение на экране плазменного монитора прекрасно видно, не зависимо от условий освещённости помещения, в то время как для того, чтобы комфортно посмотреть, например, фильм в домашнем кинотеатре, который работает при помощи видеопроектора, вам просто необходимо будет затемнить вашу комнату. Иначе, в светлый ясный день увидеть чёткое изображение вам так и не удастся. А вот на экране плазменного монитора вы всегда будете видеть насыщенное изображение великолепного качества. Так что видеопроекторы, которые до сих пор так и не дошли до рядового пользователя из-за своей очень высокой цены (комплект оборудования для домашнего кинотеатра может стоить 15-25 тыс. долларов) видимо потихонечку, не спеша так и «отплывут» на второй план с появлением всё более новых моделей плазменных мониторов.

Плазменные мониторы - это совершенно новое поколение техники для отображения видео и компьютерной информации, пришедшее на смену привычным CRT-мониторам. Плазменная технология - это технология будущего. В наше время уникальные характеристики плазменных мониторов открывают перед собой широкие возможности для их применения. Благодаря минимальной толщине мониторов - менее 10 сантиметров, широкому углу обозрения и небольшому весу, плазменные дисплеи с каждым днем приобретают все более прочную репутацию очень привлекательного и соблазнительного объекта, способного украсить любую стену. Их можно использовать практически везде: в аэропортах и на вокзалах, в супермаркетах и в казино, в банках и гостиницах, на выставках и конференциях, на презентациях и различных шоу, на телестудиях и в бизнес центрах. И этим списком круг применения плазменных мониторов не ограничивается. Уникальные характеристики мониторов позволяют использовать их также и для промышленного производства. Удобная эргономическая конструкция, позволяющая размещать монитор в любом удобном для вас месте, и специальные фирменные, а значит, кстати, и не дешёвые аксессуары позволяют устанавливать мониторы на полу, вешать их на стены с разным уровнем наклона, подвешивать к потолку и т.д.

В дополнение к плазменным мониторам существует целый спектр дополнительного оборудования, такого, например, как акустические колонки, всевозможные подставки, тумбочки и кронштейны для крепления, которые, как правило, продаются отдельно за большие деньги. Дорогие они по той причине, что, во-первых, они фирменные, а, во-вторых, как правило, сделаны специально для определённой модели монитора, а значит, они идеально подходят по дизайну именно к этому монитору. А с другим дополнительным оборудованием монитор, наверняка, уже не будет выглядеть так престижно и аккуратно. И в этой ситуации вы, наверное, со мной согласитесь, что нерационально будет «лепить» на Мерседес колёса от Жигулей. И из-за этого пользователю ничего не остаётся делать, как покупать все эти «прибамбасы» для своего монитора по баснословным ценам.

Из всего выше сказанного можно сделать один вывод: за плазменными мониторами большое будущее, а нам – рядовым пользователям остаётся только ждать и надеяться на то, что когда-нибудь цены на эти мониторы упадут настолько, что они станут для нас доступными, и мы сможем наслаждаться высоким качеством изображения даже у себя дома.

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer -- светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы -- плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 сантиметров. Поэтому, несмотря на большой экран, они могут быть установлены в любом месте -- на стене, под потолком, на столе.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. приложение Л, рис. 12). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд -- часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Высокая яркость до 650 кд/м2 и контрастность до 3000:1 наряду с отсутствием дрожания являются большими преимуществами таких мониторов (для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2 , а у телевизора -- от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях -- даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости -- панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

На этой страничке мы поговорим на такие темы, как: Устройства вывода информации , , Плазменные мониторы , Мониторы с электронно лучевой трубкой .

Монитор (дисплей ) устройство визуального отображения информации, предназначен для вывода на экран текстовой и графической информации.

Характеризуется монитор размером по диагонали, разрешающей способности, величиной зерна, максимальной частотой обновления кадров, по типу подключения.

Типы мониторов:

  • Цветные и монохромные.
  • Различного размера (от 14 дюймов).
  • С различным зерном.
  • Жидкокристаллические и с электронно-лучевой трубкой.

Монитор работает под управлением специального аппаратного устройства – видеоадаптера (видеоконтроллера, видеокарты), который предусматривает два возможных режима – текстовый и графический.

В текстовом режиме экран разбивается (чаще всего) на 25 строк по 80 позиций в каждой строке (всего 2000 позиций). В каждую позицию (знакоместо) может быть выведен любой из символов кодовой таблицы – прописная или строчная буква латинского или русского алфавита, служебный знак («+», «-», «.» и др.), символ псевдографики, а также графический образ почти каждого управляющего символа. Для каждого знакоместа на экране работающая с экраном программа сообщает видеоконтроллеру всего два байта – байт с кодом символа и байт с кодом цвета символа и цвета фона. А видеоконтроллер формирует изображение на экране.

В графическом режиме изображение формируется так же, как и на экране телевизора, – мозаикой, совокупностью точек, каждая из которых окрашена в тот или иной цвет. На экран в графическом режиме можно выводить тексты, графики, рисунки и т.д. А при выводе тестов можно использовать различные шрифты, любые размеры, шрифты, любые размеры, цвета, расположение букв. В графическом режиме экран монитора представляет собой, по существу растр, состоящий из пикселей.

Примечание

Минимальный элемент изображения на экране (точка) называется пикселем – от английского «picture element»…

Количество точек по горизонтали и вертикали, которые монитор способен воспроизвести четко и раздельно, называется разрежающей способностью монитора. Выражение «разрежающая способность монитора 1024×768» означает, что монитор может выводить 1024 горизонтальных строк по 768 точек в каждой строке.

Существуют два основных типа монитора : жидкокристаллические и с электронно-лучевой трубкой . Менее распространенными являются плазменные мониторы и мониторы с сенсорными экранами .

Мониторы с электронно лучевой трубкой.

Изображение на экране монитора с электронно-лучевой трубкой создается пучком электронов, испускаемых электронной пушкой и принцип их работы аналогичен принципу работы телевизора. Этот луч (пучок электронов) разгоняется высоким электрическим напряжением и падает на внутреннюю поверхность экрана, покрытую составом люминофора, светящимся под его взаимодействием.

Люминофор наносится в виде наборов точек трёх основных цветов – красного (Red), зелёного (Green) и синего (Blue). Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Цветовая модель, в которой строится изображение на экране монитора называется RGB. Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел – точку, из которых формируется изображение.

Расстояние между центрами пикселов называется точечным шагом монитора . Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг (по диагонали) составляет 0,27-0,28 мм. При таком шаге глаз человека воспринимает точки триады как одну точку «сложного» цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки «нацелены» на один и тот же пиксел, но каждая из них излучает поток электронов в сторону «своей» точки люминофора.

Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны.

Перед экраном на пути электронов ставится маска – тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета. Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора , которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д. Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки.

Примечание

Последняя не должна быть ниже 60 Гц, иначе изображение будет мерцать…

Жидкокристаллические мониторы.

Жидкокристаллические мониторы (ЖК ) имеют меньший вес, геометрический объем, потребляют на два порядка меньше энергии, не излучают электромагнитных волн, воздействующих на здоровье людей, но дороже мониторов с электронно-лучевой трубкой .

Жидкие кристаллы – это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим .

Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов , помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу – сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Плазменные мониторы.

Работа плазменных мониторов очень похожа на работы неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном.

Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подаются высокочастотные напряжения. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора, в диапазоне видимом человеком. Фактически каждый пиксель на экране работает как обычная флуоресцентная лампа.

Высокая яркость, контрастность и отсутствия дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к тому, под которым можно увидеть нормальное изображение на плазменных мониторах – 160° по сравнению с 145°, как в случае с ЖК мониторами . Большим достоинством плазменных мониторов является их срок службы. Средний срок службы без изменения качества изображения является 30 000 часов. Это в три раза больше чем обычная электронно-лучевая трубка . Единственное, что ограничивает их широкое распространение – это стоимость.

Разновидность монитора – с сенсорным экраном . Здесь общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Этим выбирается необходимый режим из меню, показанного на экране монитора .

В мониторе на основе электронно-лучевой трубки точки изображения отображаются с помощью луча (потока электронов), который заставляет светиться поверхность экрана, покрытую люминофором. Луч обегает экран построчно, слева направо и сверху вниз. Полный цикл отображения картинки называют «кадром». Чем быстрее монитор отображает и перерисовывает кадры, тем более устойчивой кажется картинка, меньше заметно мерцание и меньше устают наши глаза.

Устройство ЭЛТ-монитора. 1 -Электронные пушки. 2 - Электронные лучи. 3 - Фокусирующая катушка. 4 - Отклоняющие катушки. 5 - Анод. 6 - Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 - Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

ЖК

Жидкокристаллические дисплеи были разработаны в 1963 году в исследовательском центре Дэвида Сарнова компании RCA (Принстон, штат Нью-Джерси).

Устройство

Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса), чаще пластикового, с металлической рамкой жёсткости. Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. Если бы жидких кристаллов не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром. Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной. Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом, полноценный монитор с ЖК-дисплеем состоит из высокоточной электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса с элементами управления. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Подсветка

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее были видимым, нужен источник света. Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

  • Внешнее освещение
  • Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени использует внешнее освещение (от Солнца, ламп комнатного освещения и т.д.). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи, в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

  • Подсветка лампами накаливания
  • В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания. Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.
  • Подсветка газоразрядными ("плазменными") лампами
  • В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких газоразрядных ламп (чаще всего с холодным катодом - CCFL). В этих лампах источником света является плазма, возникающая при электрическом разряде через газ. Такие дисплеи не следует путать с плазменными дисплеями, в которых каждый пиксель сам светится и является миниатюрной газоразрядной лампой.
  • Светодиодная (LED) подветка
  • На границе первого и второго десятилетий XXI века получили распространение ЖК-дисплеи, имеющие подсветку из одного или небольшого числа светодиодов (LED). Такие ЖК-дисплеи (в торговле нередко называемые LED-дисплеями) не следует путать с настоящими LED-дисплеями, в которых каждый пиксель сам светится и является миниатюрным светодиодом.

Преимущества и недостатки

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малые размер и масса в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в зависимости от модели, настроек и выводимого изображения может как совпадать с потреблением ЭЛТ и плазменных экранов сравнимых размеров, так и быть существенно - до пяти раз - ниже. Энергопотребление ЖК-мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих мониторах 2007 года для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более герц. С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320*200) вообще не могут быть отображены на многих мониторах.
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ртутных ламп.
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы плохо защищены от повреждений. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих.
  • Пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев, не подверженных ей.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи (матрица с органическими светодиодами), однако она встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

Плазменные мониторы

Плазменная панель представляет собой матрицу газонаполненных ячеек, заключенных между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.

OLED-мониторы

Органический светодиод (англ. Organic Light-Emitting Diode (OLED) - органический светоизлучающий диод) - полупроводниковый прибор, изготовленный из органических соединений, который эффективно излучает свет, если пропустить через него электрический ток. На его основе и изготовлены OLED-мониторы. Предполагается, что производство таких дисплеев будет гораздо дешевле, нежели производство жидкокристаллических дисплеев.

Принцип действия

Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона, которое сопровождается испусканием (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным. Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит. В качестве материала анода обычно используется оксид индия, легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.

Преимущества

В сравнении c плазменными дисплеями

  • меньшие габариты и вес
  • более низкое энергопотребление при той же яркости
  • возможность длительное время показывать статическую картинку без выгорания экрана

В сравнении c жидкокристаллическими дисплеями

  • меньшие габариты и вес
  • отсутствие необходимости в подсветке
  • отсутствие такого параметра как угол обзора - изображение видно без потери качества с любого угла
  • мгновенный отклик (на порядок выше, чем у LCD) - по сути полное отсутствие инерционности
  • более качественная цветопередача (высокий контраст)
  • возможность создания гибких экранов
  • большой диапазон рабочих температур (от?40 до +70 °C)

Яркость. OLED-дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей - свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2.

Контрастность. Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1 (Контрастность LCD до 2000:1, CRT до 5000:1)

Углы обзора. Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения. Впрочем, современные ЖК дисплеи (за исключением основанных на TN+Film матрицах) также сохраняют приемлемое качество картинки при больших углах обзора.

Энергопотребление.

Недостатки


Главная проблема для OLED - время непрерывной работы должно быть более 15 тыс. часов. Одна проблема, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED всё-таки добрался до отметки в 17,5 тыс. часов (примерно 2 года) непрерывной работы.

При этом для дисплеев телефонов, фотокамер, планшетов и иных малых устройств достаточно в среднем около 5 тысяч часов непрерывной работы, в связи с быстрыми темпами устаревания аппаратуры и еe неактуальности после нескольких последующих лет. Поэтому в них OLED успешно применяется уже сегодня.

Можно считать это временными трудностями становления новой технологии, поскольку разрабатываются новые долговечные люминофоры. Также растут мощности по производству матриц. Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени дисплеи произведeнные по OLED технологиям, с высокой вероятностью станут доминантными на рынке электроники народного потребления.

Проекционные мониторы

Проекционным монитором мы назвали систему, состоящую из проектора и поверхности для проецирования.

Проектор

Проектор - световой прибор, перераспределяющий свет лампы с концентрацией светового потока на поверхности малого размера или в малом объёме. Проекторы являются в основном оптико-механическими или оптическо-цифровыми приборами, позволяющими при помощи источника света проецировать изображения объектов на поверхность, расположенную вне прибора - экран.

В паре с компьютером используется именно мультимедийный проектор (также используется термин «Цифровой проектор»).На вход устройства подаётся видеосигнал в реальном времени (аналоговый или цифровой). Устройство проецирует изображение на экран. Возможно при этом наличие звукового канала.

Говоря о проекторах, стоит упомянуть так назыввемый пико-проектор. Это проектор небольшого, карманного размера. Часто выполнен в форм-факторе сотового телефона и имеет аналогичный размер. Термин «пико-проектор» также может означать миниатюрный проектор, встроенный в фотокамеру, мобильный телефон, PDA и другую мобильную технику.

Существующие карманные проекторы позволяют получать проекции размером до 100 дюймов по диагонали, яркостью до 40 люмен. У мини-проекторов, выполненных как самостоятельное устройство, часто имеется отверстие с резьбой для стандартного штатива и почти всегда - встроенные кард-ридеры или флеш-память, что позволяет работать без источника сигнала. Для снижения энергопотребления в пико-проекторах применяются светодиоды.

Всё о 3D

Только современные технологии способны формировать на экране кинотеатра, телевизора или компьютерного монитора трехмерную картинку. Мы расскажем, как работают эти технологии

Футуристический вертолет проходит низко над головами зрителей, закованные в экзоброню роботизованные морпехи сметают все на своем пути, здоровенный космический шаттл сотрясает воздух ревом двигателей – так близко и устрашающе реально, что непроизвольно вжимаешь голову в плечи. Недавно вышедший на экраны «Аватар» Джеймса Камерона или трехмерная компьютерная игра заставляют зрителя, сидящего в кресле перед экраном, чувствовать себя участником фантастического действа... Совсем скоро инопланетные монстры будут прогуливаться в каждом доме, где есть современный домашний кинотеатр. Но каким же образом плоский экран способен показывать объемную картинку?

Человек в трехмерном пространстве

Один и тот же объект левым и правым глазом мы видим под разными углами, таким образом формируются два изображения – стереопара. Мозг соединяет обе картинки в одну, которая интерпретируется сознанием как объемная. Различия в перспективе позволяют мозгу определить размер объекта и расстояние до него. На основании всей этой информации человек получает пространственное представление с правильными пропорциями.

Как возникает объемное изображение

Для того чтобы картинка на экране казалась объемной, каждый глаз зрителя, как в жизни, должен видеть несколько отличающееся изо­бражение, из которых мозг сложит единую трехмерную картину.

Первые фильмы в формате 3D, созданные с учетом этого принципа, появились на экранах кинотеатров еще в 50-е годы. По­скольку набирающее популярность телевидение уже тогда составляло серьезную конкуренцию киноиндустрии, дельцы от кинематографа хотели заставить людей оторваться от диванов и направиться в кино, прельщая их визуальными эффектами, которые в то время не мог обеспечить ни один телевизор: цветным изображением, широким экраном, многоканальным звуком и, разумеется, трехмерностью. Эффект объема при этом создавался несколькими разными способами.


Анаглифический метод
(ана­глиф – по-гречески «рельефный»). На ранних этапах 3D-кинема­то­графа в прокат выпускались только черно-белые 3D-фильмы. В каждом соответствующим образом оснащенном кинотеатре для их показа использовались два кинопроектора. Один проецировал фильм через красный фильтр, другой выводил на экран слегка смещенные по горизонтали кинокадры, пропуская их через зеленый фильтр. Посетители надевали легкие картонные очки, в которые вместо стекол были уcтановлены кусочки красной и зеленой прозрачной пленки, благодаря чему каждый глаз видел только нужную часть изобра­жения, а зрители воспринимали «объемную» картинку. Однако оба кинопроектора при этом должны быть направлены строго на экран и работать абсолютно синхронно. В противном случае неизбежно раздвоение изображения и, как следствие, головные боли вместо удовольствия от просмотра – у зрителей.

Подобные очки хорошо подходят и для современных цветных 3D-фильмов, в частности, записанных методом Dolby 3D. В этом случае достаточно одного проектора с установленными перед объективом световыми фильтрами. Каждый из фильтров пропускает для левого и правого глаза красный и синий свет. Одно изображение имеет синеватый, другое – красноватый оттенок. Световые фильтры в очках пропускают только соответствующие, предназначенные для определенного глаза кадры. Однако данная технология позволяет добиться лишь незначительного 3D-эффекта, с малой глубиной.


Затворный метод.
Оптимален для просмотра цветных фильмов. В отличие от анаглифического этот метод предусматривает попеременную демонстрацию проектором изображений, предназначенных для левого и правого глаза. Благодаря тому, что чередование изображений осуществляется с высокой частотой – от 30 до 100 раз в секунду – мозг выстраивает целостную пространственную картину и зритель видит на экране цельное трехмерное изображение. Ранее данный метод назывался NuVision, в настоящее время он чаще именуется XpanD.

Для просмотра 3D-фильмов по этому методу используются затворные очки, в которые вместо стекол или фильтров установлены два оптических затвора. Эти небольшие светопропускающие ЖК-матрицы способны по команде от контроллера менять прозрачность – то затемняясь, то просветляясь в зависимости от того, на какой глаз в данный момент не­обходимо подать изображение.

Затворный метод используется не только в кинотеатрах: применяется он и в телевизорах, и в компьютерных мониторах. В кинотеатре подача команд осуществляется с помощью ИК-передатчика. Некоторые модели затворных очков 90-х годов, предназначенных для ПК, подключались к компьютеру с помощью кабеля (современные модели имеют беспроводной интерфейс).

Недостаток данного метода в том, что затворные очки являются сложным электронным устройством, потребляющим электроэнергию. Следовательно, они имеют достаточно высокую (особенно по сравнению с картонными очками) стоимость и значительный вес.

Поляризационный метод. В сфере кино данное решение носит название RealD. Его суть в том, что проектор попеременно демонстрирует кинокадры, в которых световые волны имеют разное направление поляризации светового потока. В необходимых для просмотра специальных очках установлены фильтры, пропускающие только световые волны, поляризованные определенным образом. Так оба глаза получают изображения с различной информацией, на основании которой мозг формирует объемную картинку.

Поляризационные очки несколько тяжелее картонных, но поскольку они работают без источника электроэнергии, то весят и стоят значительно меньше, чем затворные. Однако наряду с поляризационными фильтрами, устанавливаемыми на кинопроекторы и в очки, для показа 3D-фильмов по этому методу требуется дорогой экран со специальным покрытием.

На данный момент предпочтение окончательно не отдано ни одному из названных методов. Стоит, однако, отметить, что с двумя проекторами (по анаглифическому методу) работает все меньшее количество кинотеатров.

Как создаются 3D-фильмы

Использование сложных технических приемов требуется уже на этапе съемки, а не только в процессе просмотра 3D-фильмов. Для создания иллюзии трехмерности каждую сцену необходимо снимать одновременно двумя камерами, с разных ракурсов. Как и глаза человека, обе камеры размещают близко друг к другу, на одинаковой высоте.

3D-технологии для домашнего применения

Для просмотра 3D-фильмов на DVD до сих пор используются простые картонные очки, наследие далеких 50-х. Этим объясняется и скромный результат – плохая цветопередача и недостаточная глубина изображения.

Однако даже современные 3D-технологии привязаны к специальным очкам, и такое положение вещей, по всей видимости, изменится не скоро. Хотя в 2008 году компания Philips и представила прототип 42-дюймового жидко­кристаллического 3D-телевизора, не требующего использования очков, данная технология достигнет своей рыночной зрелости минимум через 3–4 года.

А вот о выпуске 3D-телевизоров, работающих в тандеме с очками, на международной выставке IFA 2009 объявили сразу несколько производителей. К примеру, Panasonic намерен уже к середине 2010 года выпустить модели телевизоров с поддержкой 3D, так же, как Sony и Loewe, делая ставку на затворный метод. Компании JVC, Philips и Toshiba также стремятся взойти на «3D-подиум», однако они отдают предпочтение поляризационному методу. LG и Samsung разрабатывают свои устройства на основе обеих технологий.

Контент для 3D

Основным источником трехмерного видеоконтента являются Blu-ray-диски. Контент передается на источник изображения через интерфейс HDMI. Для этого телевизор и проигрыватель должны поддерживать соответствующие технологии, а также недавно принятый стандарт HDMI 1.4 – одновременную передачу двух потоков данных формата 1080p обеспечивает только он. Пока что устройства с поддержкой HDMI 1.4 можно пересчитать по пальцам.

3D-технологии на ПК

Первоначально просмотр трехмерного изображения на компьютере был доступен только с помощью очков или специальных шлемов виртуальной реальности. И те и другие были оснащены двумя цветными ЖК-дисплеями – для каждого из глаз. Качество результирующего изображения при использовании данной технологии зависело от качества применяемых ЖК-экранов.

Однако данные устройства обладали целым рядом недостатков, которые отпугивали большинство покупателей. Кибершлем фирмы Forte, появившийся в середине 90-х, был громоздким, неэффективным и напоминал средневековое орудие пытки. Скромного разрешения в 640х480 точек для компьютерных программ и игр было явно недостаточно. И хотя позднее были выпущены более совершенные очки, к примеру модель LDI-D 100 фирмы Sony, но даже они были достаточно тяжелыми и вызывали сильный дискомфорт.

Выдержав почти десятилетнюю паузу, технологии формирования стереоизображения на экране монитора вышли на новый этап своего развития. Не может не радовать то обстоятельство, что по крайней мере один из двух крупных производителей графических адаптеров, фирма NVIDIA, разработал нечто инновационное. Комплекс 3D Vision стоимостью около 6 тыс. руб. включает в себя затворные очки и ИК-передатчик. Однако для создания пространственной картинки при помощи этих очков требуется соответствующее аппаратное обеспечение: ПК должен быть оснащен мощной видеоплатой NVIDIA. А для того чтобы псевдотрехмерная картинка не мерцала, монитор с разрешением в 1280х1024 точки должен обеспечивать частоту обновления экрана минимум в 120 Гц (по 60 Гц на каждый глаз). Первым ноутбуком, оснащенным данной технологией, стал ASUS G51J 3D.

В настоящее время доступны также так называемые 3D-профили более чем для 350 игр, которые можно скачать с веб-сайта NVIDIA (www.nvidia.ru). В их число входят как современные игры жанра экшн, к примеру Borderlands, так и выпущенные ранее.

В продолжение темы компьютерных игр, альтернативой затворному 3D является поляризационный метод. Для его реализации нужен монитор с поляризационным экраном, например Hyundai W220S. Объемное изображение становится доступно при наличии любой мощной видеокарты ATI или NVIDIA. Однако при этом разрешение снижается с 1680x1050 до 1680x525 точек, поскольку используется чересстрочный вывод кадров. Какие из игр поддерживают поляризационный метод, можно узнать в Интернете по адресу: www.ddd.com.

3D-фотоаппарат

Уже сегодня есть возможность получать трехмерные фотографии: фотокамера Fujifilm Finepix Real 3D W1 с помощью двух объективов и двух матриц способна фиксировать фотографии и даже короткие видеоролики с трехмерным пространственным эффектом. В качестве аксессуара для камеры предлагается цифровая фоторамка, демонстрирующая фото в формате 3D. Тот, кто захочет распечатать свои трехмерные снимки, может обратиться в онлайновый фотосервис Fuji. Стоимость одного отпечатка составляет около 5 евро, а срок доставки заказа из Великобритании, где печатаются фотографии, – почти две недели.

3D-сканер

3D-сканеры умеют сканировать по крайней мере сейчас небольшие предметы и сохранять их «объемные» изображения в виде файлов на жестком диске. При этом съемка объекта, как правило, производится двумя камерами. В зависимости от своей величины объект съемки либо вращается на специальной платформе, либо камеры движутся вокруг него. Цена и дата появления 3D-сканеров на массовом рынке еще не определены.