Uml диаграммы как строить. Виды диаграмм UML. Диаграмма классов уровня проектирования

Несколько месяцев назад мне поручили выбрать инструмент для проектирования и документации систем. В компании, где я работаю, всё это делалось в ворде и прочих офисных программах, а продукты, которые компания производит, становились всё более сложными, всё больше людей участвовало в разработке, и прочее. Поэтому появилась необходимость использовать какой-нибудь более подходящий инструмент для работы аналитиков, проектировщиков и разработчиков. Поделюсь находками.

После короткого ознакомления с подобными инструментами, были выделены 5, которые оценены более детально. При оценке, мы с коллегой выделили около 30 критериев, для объективности оценки. Критерии эти мы сгруппировали так:
- Проектирование системы – даёт ли инструмент достаточно функциональности для документации требований, юс-кейсов, ОО проектирования и прочих UML диаграмм. Есть ли в нём функциональность для создания зависимости между объектами разных типов, возможность отслеживать изменения. Это – обязательный критерий для инструмента.
- Экспорт – инструмент должен поддерживать удобный экспорт артефактов, произведённых в нём. Должны быть доступны разные форматы экспорта – хотя бы html и doc. Шаблоны документов должны легко модифицироваться. Это тоже обязательный критерий.
- Удобство пользования. Инструмент должен быть удобным, интуитивно понятным, с простым интерфейсом для часто используемых функций.
- Минимизация рутины . Было бы неплохо, чтобы инструмент делал некоторые вещи сам – например, генерировал тест-кейсы, объектный дизайн из БД, может, куски кода.

Итак, 5 инструментов и их оценка.
1. Case Complete – инструмент для записи требований, создания юс-кейсов и связей между ними. Удобный интерфейс, экспорт, но один серьёзный минус – дальше юс-кейсов эта штука не идёт. Вообще непонятно, как она попала в наш список. 2 из 5.
2. Artiso Visual Case – первое, что бросается в глаза при использовании этого инструмента – дико неудобный пользовательский интерфейс. Чтобы создать элементарный класс, мне понадобилось 5 минут. Кроме того, в инструменте нету возможности связывать объекты (как юс-кейс<->класс) и пр. 1 из 5.
3. Magic Draw – у инструмента очень сильная сторона для UML, но из-за этого становиться немного неудобно. Ещё, там нет связи между разными объектами (как класс и activity и пр.). 3 из 5.
4. Sparx Enterprise Architect – соответствует практически всем выдвинутым критериям, только что некоторые часто используемые функции куда-то спрятаны. Наверно, если привыкнуть - хорошо. Ещё, я у него не нашла, как связывать требования с объектами дизайна. Может, плохо искала. 4 из 5.
5. Sybase PowerDesigner – первое впечатление после открытия программы – это совсем другой уровень. Все функции находятся именно там, где ожидаешь их найти, и этот инструмент удовлетворил все 30 критериев из описанных групп. Кроме того, в PowerDesigner есть куча очень полезных функций, которые не попали в список критериев – как например, оценка изменения(impact), проверка модели, Repository и многое другое. 5 из 5.

Вот сюда я выложила полное сравнение, если кому интересно.

Хотя PowerDesigner в разы дороже других, мы выбрали его. На сегодняшний день я его использую 2 месяца – если кому интересно, могу написать об этом - не всё в нём идеально(но близко!).

Наверно сразу спросите, почему в список не вошёл Rational Rose. Не люблю я его! Он некрасивый. И ещё, не смогла найти, где б его легально скачать. Но в принципе он хороший. Но PowerDesigner лучше

Аннотация: Предметом этого курса является The UML - унифицированный язык моделирования. В предыдущей лекции было рассказано о том, что же такое UML, о его истории, назначении, способах использования языка, структуре его определения, терминологии и нотации. Было отмечено, что модель UML - это набор диаграмм. В этой лекции мы рассмотрим такие вопросы: почему нужно несколько видов диаграмм; виды диаграмм; ООП и последовательность построения диаграмм

Прежде чем перейти к обсуждению основного материала этой лекции, давайте поговорим о том, зачем вообще строить какие-то диаграммы. Разработка модели любой системы (не только программной) всегда предшествует ее созданию или обновлению. Это необходимо хотя бы для того, чтобы яснее представить себе решаемую задачу. Продуманные модели очень важны и для взаимодействия внутри команды разработчиков, и для взаимопонимания с заказчиком. В конце концов, это позволяет убедиться в "архитектурной согласованности" проекта до того, как он будет реализован в коде.

Мы строим модели сложных систем, потому что не можем описать их полностью, "окинуть одним взглядом". Поэтому мы выделяем лишь существенные для конкретной задачи свойства системы и строим ее модель, отображающую эти свойства. Метод объектно-ориентированного анализа позволяет описывать реальные сложные системы наиболее адекватным образом. Но с увеличением сложности систем возникает потребность в хорошей технологии моделирования. Как мы уже говорили в предыдущей лекции, в качестве такой "стандартной" технологии используется унифицированный язык моделирования ( Unified Modeling Language , UML ), который является графическим языком для спецификации, визуализации, проектирования и документирования систем. С помощью UML можно разработать подробную модель создаваемой системы, отображающую не только ее концепцию, но и конкретные особенности реализации. В рамках UML -модели все представления о системе фиксируются в виде специальных графических конструкций, получивших название диаграмм.

Примечание . Мы рассмотрим не все, а лишь некоторые из видов диаграмм. Например, диаграмма компонентов не рассматривается в этой лекции, которая является лишь кратким обзором видов диаграмм. Количество типов диаграмм для конкретной модели приложения никак не ограничивается. Для простых приложений нет необходимости строить диаграммы всех без исключения типов. Некоторые из них могут просто отсутствовать, и этот факт не будет считаться ошибкой. Важно понимать, что наличие диаграмм определенного вида зависит от специфики конкретного проекта. Информацию о других (не рассмотренных здесь) видах диаграмм можно найти в стандарте UML.

Почему нужно несколько видов диаграмм

Для начала определимся с терминологией. В предисловии к этой лекции мы неоднократно использовали понятия системы, модели и диаграммы. Автор уверен, что каждый из нас интуитивно понимает смысл этих понятий, но, чтобы внести полную ясность , снова заглянем в глоссарий и прочтем следующее:

Система - совокупность взаимосвязанных управляемых подсистем, объединенных общей целью функционирования.

Да, не слишком информативно. А что же такое тогда подсистема? Чтобы прояснить ситуацию, обратимся к классикам:

Системой называют набор подсистем, организованных для достижения определенной цели и описываемых с помощью совокупности моделей, возможно, с различных точек зрения.

Что ж, ничего не попишешь, придется искать определение подсистемы. Там же сказано, что подсистема - это совокупность элементов, часть из которых задает спецификацию поведения других элементов. Ян Соммервилл объясняет это понятие таким образом:

Подсистема - это система, функционирование которой не зависит от сервисов других подсистем. Программная система структурируется в виде совокупности относительно независимых подсистем. Также определяются взаимодействия между подсистемами.

Тоже не слишком понятно, но уже лучше. Говоря "человеческим" языком, система представляется в виде набора более простых сущностей, которые относительно самодостаточны. Это можно сравнить с тем, как в процессе разработки программы мы строим графический интерфейс из стандартных "кубиков" - визуальных компонентов, или как сам текст программы тоже разбивается на модули, которые содержат подпрограммы, объединенные по функциональному признаку, и их можно использовать повторно, в следующих программах.

С понятием системы разобрались. В процессе проектирования система рассматривается с разных точек зрения с помощью моделей, различные представления которых предстают в форме диаграмм. Опять-таки у читателя могут возникнуть вопросы о смысле понятий модели и диаграммы . Думаем, красивое, но не слишком понятное определение модели как семантически замкнутой абстракции системы вряд ли прояснит ситуацию, поэтому попробуем объяснить "своими словами".

Модель - это некий (материальный или нет) объект , отображающий лишь наиболее значимые для данной задачи характеристики системы. Модели бывают разные - материальные и нематериальные, искусственные и естественные, декоративные и математические...

Приведем несколько примеров. Знакомые всем нам пластмассовые игрушечные автомобильчики, которыми мы с таким азартом играли в детстве, это не что иное, как материальная искусственная декоративная модель реального автомобиля. Конечно, в таком "авто" нет двигателя, мы не заполняем его бак бензином, в нем не работает (более того, вообще отсутствует) коробка передач, но как модель эта игрушка свои функции вполне выполняет: она дает ребенку представление об автомобиле, поскольку отображает его характерные черты - наличие четырех колес, кузова, дверей, окон, способность ехать и т. д.

В ходе медицинских исследований опыты на животных часто предшествуют клиническим испытаниям медицинских препаратов на людях. В таком случае животное выступает в роли материальной естественной модели человека.

Уравнение, изображенное выше - тоже модель, но это модель математическая, и описывает она движение материальной точки под действием силы тяжести.

Осталось лишь сказать, что такое диаграмма . Диаграмма - это графическое представление множества элементов. Обычно изображается в виде графа с вершинами (сущностями) и ребрами (отношениями). Примеров диаграмм можно привести множество. Это и знакомая нам всем со школьных лет блок-схема , и схемы монтажа различного оборудования, которые мы можем видеть в руководствах пользователя, и дерево файлов и каталогов на диске, которое мы можем увидеть, выполнив в консоли Windows команду tree , и многое-многое другое. В повседневной жизни диаграммы окружают нас со всех сторон, ведь рисунок воспринимается нами легче, чем текст...

Но вернемся к проектированию ПО (и не только). В этой отрасли с помощью диаграмм можно визуализировать систему с различных точек зрения . Одна из диаграмм, например, может описывать взаимодействие пользователя с системой, другая - изменение состояний системы в процессе ее работы, третья - взаимодействие между собой элементов системы и т. д. Сложную систему можно и нужно представить в виде набора небольших и почти независимых моделей-диаграмм, причем ни одна из них не является достаточной для описания системы и получения полного представления о ней, поскольку каждая из них фокусируется на каком-то определенном аспекте функционирования системы и выражает разный уровень абстракции . Другими словами, каждая модель соответствует некоторой определенной, частной точке зрения на проектируемую систему.

Несмотря на то что в предыдущем абзаце мы весьма вольготно обошлись с понятием модели, следует понимать, что в контексте приведенных выше определений ни одна отдельная диаграмма не является моделью . Диаграммы - лишь средство визуализации модели, и эти два понятия следует различать. Лишь набор диаграмм составляет модель системы и наиболее полно ее описывает, но не одна диаграмма , вырванная из контекста.

Виды диаграмм

UML 1.5 определял двенадцать типов диаграмм , разделенных на три группы:

  • четыре типа диаграмм представляют статическую структуру приложения;
  • пять представляют поведенческие аспекты системы;
  • три представляют физические аспекты функционирования системы (диаграммы реализации).

Текущая версия UML 2.1 внесла не слишком много изменений. Диаграммы слегка изменились внешне (появились фреймы и другие визуальные улучшения), немного усовершенствовалась нотация , некоторые диаграммы получили новые наименования.

Впрочем, точное число канонических диаграмм для нас абсолютно неважно, так как мы рассмотрим не все из них, а лишь некоторые - по той причине, что количество типов диаграмм для конкретной модели конкретного приложения не является строго фиксированным. Для простых приложений нет необходимости строить все без исключения диаграммы. Например, для локального приложения не обязательно строить диаграмму развертывания. Важно понимать, что перечень диаграмм зависит от специфики разрабатываемого проекта и определяется самим разработчиком. Если же любопытный читатель все-таки пожелает узнать обо всех диаграммах UML , мы отошлем его к стандарту UML (http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML). Напомним, что цель этого курса - не описать абсолютно все возможности UML , а лишь познакомить с этим языком, дать первоначальное представление об этой технологии.

Итак, мы кратко рассмотрим такие виды диаграмм, как:

  • диаграмма прецедентов ;
  • диаграмма классов;
  • диаграмма объектов ;
  • диаграмма последовательностей;
  • диаграмма взаимодействия;
  • диаграмма состояний;
  • диаграмма активности ;
  • диаграмма развертывания .

О некоторых из этих диаграмм мы будем говорить подробнее в следующих лекциях. Пока же мы не станем заострять внимание на подробностях, а зададимся целью научить читателя хотя бы визуально различать виды диаграмм, дать начальное представление о назначении основных видов диаграмм. Итак, начнем.

Диаграмма прецедентов (use case diagram)

Любые (в том числе и программные) системы проектируются с учетом того, что в процессе своей работы они будут использоваться людьми и/или взаимодействовать с другими системами. Сущности, с которыми взаимодействует система в процессе своей работы, называются экторами , причем каждый эктор ожидает, что система будет вести себя строго определенным, предсказуемым образом. Попробуем дать более строгое определение эктора. Для этого воспользуемся замечательным визуальным словарем по UML Zicom Mentor :

Эктор (actor) - это множество логически связанных ролей, исполняемых при взаимодействии с прецедентами или сущностями (система, подсистема или класс). Эктором может быть человек или другая система, подсистема или класс, которые представляют нечто вне сущности.

Графически эктор изображается либо " человечком ", подобным тем, которые мы рисовали в детстве, изображая членов своей семьи, либо символом класса с соответствующим стереотипом , как показано на рисунке. Обе формы представления имеют один и тот же смысл и могут использоваться в диаграммах. "Стереотипированная" форма чаще применяется для представления системных экторов или в случаях, когда эктор имеет свойства и их нужно отобразить (рис. 2.1).

Внимательный читатель сразу же может задать вопрос: а почему эктор, а не актер ? Согласны, слово "эктор" немного режет слух русского человека. Причина же, почему мы говорим именно так, проста - эктор образовано от слова action , что в переводе означает действие . Дословный же перевод слова "эктор" - действующее лицо - слишком длинный и неудобный для употребления. Поэтому мы будем и далее говорить именно так.


Рис. 2.1.

Тот же внимательный читатель мог заметить промелькнувшее в определении эктора слово "прецедент". Что же это такое? Этот вопрос заинтересует нас еще больше, если вспомнить, что сейчас мы говорим о диаграмме прецедентов . Итак,

Прецедент (use-case) - описание отдельного аспекта поведения системы с точки зрения пользователя (Буч).

Определение вполне понятное и исчерпывающее, но его можно еще немного уточнить, воспользовавшись тем же Zicom Mentor "ом:

Прецедент (use case) - описание множества последовательных событий (включая варианты), выполняемых системой, которые приводят к наблюдаемому эктором результату. Прецедент представляет поведение сущности, описывая взаимодействие между экторами и системой. Прецедент не показывает, "как" достигается некоторый результат, а только "что" именно выполняется.

Прецеденты обозначаются очень простым образом - в виде эллипса, внутри которого указано его название. Прецеденты и экторы соединяются с помощью линий . Часто на одном из концов линии изображают рис. 2.3

  • формирование общих требований к поведению проектируемой системы;
  • разработка концептуальной модели системы для ее последующей детализации;
  • подготовка документации для взаимодействия с заказчиками и пользователями системы.
  • Visual Studio 2010 Ultimate предоставляет достаточно удобные возможности для реверс-инжиниринга. С помощью средств Visual Studio мы можем на основе существующего кода построить UML-модель и понять как у нас, собственно, все работает, но при этом не прилагать гигантские усилия по созданию диаграмм вручную и поддержанию их в актуальном состоянии.

    Все бы хорошо, но у данного инструмента напрочь отсутствует возможность синхронизации модель с кодом. Т.е., после изменения модели, нам приходится вручную изменять классы. В случае большого количества мелких изменений, получается довольно неудобно, и по этой причине от полноценного моделирования частенько отказываются.

    Недавно Microsoft выпустила дополнение под названием Microsoft Visual Studio 2010 Feature Pack 2. Данный инструмент дает нам прекрасную возможность синхронизировать изменения модели в код. Вкратце расскажу, как это можно использовать.

    Для примера допустим, что у нас есть примитивный блог. Предметная область представлена двумя классами: Author и Article. Добавляем в солюшн новый Modeling Project. В нем создаем UML Class Diagram.

    Воспользуемся возможностями Reverse Engineering. Перетаскиваем классы из Architecture Explorer-а на диаграмму. При этом на диаграмме сущность появляются вместе с атрибутами. Периодически между сущностями образуются связи, которые должны быть (и даже периодически правильно показывается тип связи), но в каких случаях – определить пока не получилось.

    Как нам всем известно, стандарт UML 2.0 определяет четыре стандартных типа данных: Boolean, Integer, String и UnlimitedNatural. Остальные типы автоматически создаются в пакетах в соответствии с расположением в пространствах имен.NET.

    Итак, попытаемся «починить» модель до адекватного состояния, а заодно, немного расширим ее. Для этого, создаем на диаграмме новый класс, в UML Model Explorer-е перетаскиваем его в нужный Package и выбираем стереотип C# Class (Microsoft добавила несколько специфичных для.NET стереотипов, которые используются при кодогенерации).

    Заметьте, данный класс еще не присутствует в сборке Domain. Для того чтобы прописать его туда, а заодно применить все наши изменения, нужно сделать следующее.

    В Model Explorer выбираем сборку Domain, идем в Properties и в пункте Text Template Binding тыкаем кнопочку «…». Добавляем новый элемент, в поле Project Path указываем имя проекта, в который будет генерироваться код, в поле Target Directory указываем папочку относительно проекта (мы генерим в корень) и указываем адрес шаблона. По умолчанию они находятся в папке «C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\Extensions\Microsoft\Visualization and Modeling Feature Pack\2.0\Templates\Text». Можно задать несколько шаблонов на все случаи жизни. В нашем случае, выбираем ClassTemplate.t4.

    После этого, нажимаем правой кнопочкой мыши в свободное место диаграммы и выбираем пункт Generate Code.

    И – вуаля! Новый класс добавлен в сборку, все изменения применены в соответствии с моделью.

    Кстати говоря, с помощью стереотипов имеется возможность указывать практически все: видимость членов, атрибуты, подключаемые при генерации пространства имен и пр.

    Итак, M$ предлагает нам прекрасный инструмент, серьезно облегчающий жизнь архитекторам и разработчикам. К сожалению, этот очень необходимый пакет доступен только подписчикам MSDN, и компания почему-то не позволяет использовать его всем желающим легальным пользователям. И это при стоимости VS Ultimate порядка 300 тыс. рублей. Будем надеяться, что в ближайшем будущем такое положение вещей изменится.

    UML -- язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML-моделью. UML был создан для определения, визуализации, проектирования и документирования в основном программных систем. UML не является языком программирования, но в средствах выполнения UML-моделей как интерпретируемого кода возможна кодогенерация.

    Использование UML не ограничивается моделированием программного обеспечения. Его также используют для моделирования бизнес-процессов, системного проектирования и отображения организационных структур.

    UML позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), объединение (aggregation) и поведение), и больше сконцентрироваться на проектировании и архитектуре.

    Язык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML одновременно является простым и мощным средством моделирования, который может быть эффективно использован для построения концептуальных, логических и графических моделей сложных систем самого различного целевого назначения. Этот язык вобрал в себя наилучшие качества методов программной инженерии, которые с успехом использовались на протяжении последних лет при моделировании больших и сложных систем.

    Язык UML основан на некотором числе базовых понятий, которые могут быть изучены и применены большинством программистов и разработчиков, знакомых с методами объектно-ориентированного анализа и проектирования. При этом базовые понятия могут комбинироваться и расширяться таким образом, что специалисты объектного моделирования получают возможность самостоятельно разрабатывать модели больших и сложных систем в самых различных областях приложений.

    Визуальное моделирование в UML можно представить как некоторый процесс поуровневого спуска от наиболее обшей и абстрактной концептуальной модели исходной системы к логической, а затем и к физической модели соответствующей программной системы. Для достижения этих целей вначале строится модель в форме так называемой диаграммы вариантов использования (use case diagram), которая описывает функциональное назначение системы или, другими словами, то, что система будет делать в процессе своего функционирования. Диаграмма вариантов использования является исходным концептуальным представлением или концептуальной моделью системы в процессе ее проектирования и разработки.

    Разработка диаграммы вариантов использования преследует цели:

    Определить общие границы и контекст моделируемой предметной области на начальных этапах проектирования системы;

    Сформулировать общие требования к функциональному поведению проектируемой системы;

    Разработать исходную концептуальную модель системы для ее последующей детализации в форме логических и физических моделей;

    Подготовить исходную документацию для взаимодействия разработчиков системы с ее заказчиками и пользователями.

    Суть данной диаграммы состоит в следующем: проектируемая система представляется в виде множества сущностей или актеров, взаимодействующих с системой с помощью так называемых вариантов использования. При этом актером (actor) или действующим лицом называется любая сущность, взаимодействующая с системой извне. Это может быть человек, техническое устройство, программа или любая другая система, которая может служить источником воздействия на моделируемую систему так, как определит сам разработчик. В свою очередь, вариант использования (use case) служит для описания сервисов, которые система предоставляет актеру. Другими словами, каждый вариант использования определяет некоторый набор действий, совершаемый системой при диалоге с актером. При этом ничего не говорится о том, каким образом будет реализовано взаимодействие актеров с системой.

    Диаграммой последовательностей (Sequence diagram) называется диаграмма взаимодействий, акцентирующая внимание на временной упорядоченности сообщений. Графически такая диаграмма представляет собой таблицу, объекты в которой располагаются вдоль оси X, а сообщения в порядке возрастания времени - вдоль оси Y. Диаграммой кооперации (Collaboration diagram) называется диаграмма взаимодействий, основное внимание в которой уделяется структурной организации объектов, принимающих и отправляющих сообщения. Графически такая диаграмма представляет собой граф из вершин и ребер.

    Диаграммы последовательностей характеризуются двумя особенностями, отличающими их от диаграмм кооперации.

    Во-первых, на них показана линия жизни объекта. Это вертикальная пунктирная линия, отражающая существование объекта во времени. Большая часть объектов, представленных на диаграмме взаимодействий, существует на протяжении всего взаимодействия, поэтому их изображают в верхней части диаграммы, а их линии жизни прорисованы сверху донизу. Объекты могут создаваться и во время взаимодействий. Линии жизни таких объектов начинаются с получения сообщения со стереотипом create. Объекты могут также уничтожаться во время взаимодействий; в таком случае их линии жизни заканчиваются получением сообщения со стереотипом destroy, а в качестве визуального образа используется большая буква X, обозначающая конец жизни объекта.

    Вторая особенность этих диаграмм - фокус управления. Он изображается в виде вытянутого прямоугольника, показывающего промежуток времени, в течение которого объект выполняет какое-либо действие, непосредственно или с помощью подчиненной процедуры. Верхняя грань прямоугольника выравнивается по временной оси с моментом начала действия, нижняя - с моментом его завершения (и может быть помечена сообщением о возврате). Вложенность фокуса управления, вызван ную рекурсией (то есть обращением к собственной операции) или обратным вы зовом со стороны другого объекта, можно показать, расположив другой фокус управления чуть правее своего родителя (допускается вложенность произвольно! глубины). Если место расположения фокуса управления требуется указать с максимальной точностью, можно заштриховать область прямоугольника, соответствующую времени, в течение которого метод действительно работает и не пере дает управление другому объекту.

    Диаграммой классов (Class diagram) называют диаграмму, на которой показано множество классов, интерфейсов, коопераций и отношений между ними. Ее изображают в виде множества вершин и дуг.

    Диаграммы классов при моделировании объектно-ориентированных систем встречаются чаще других. На таких диаграммах показывается множество классов, интерфейсов, коопераций и отношений между ними.

    Диаграммы классов используются для моделирования статического вида системы с точки зрения проектирования. Сюда по большей части относится моделирование словаря системы, коопераций и схем. Кроме того, диаграммы классов составляют основу еще двух диаграмм - компонентов и развертывания.

    Диаграммы классов важны не только для визуализации, специфицирования и документирования структурных моделей, но также для прямого и обратного проектирования исполняемых систем.

    Диаграммы деятельности - это один из пяти видов диаграмм, применяемых в UML для моделирования динамических аспектов поведения системы. Диаграмма деятельности - это, по существу, блок-схема, которая показывает, как поток управления переходит от одной деятельности к другой.

    Диаграмма кооперации акцентирует внимание на организации объектов, принимающие участие во взаимодействии. Для создания диаграммы кооперации нужно расположить участвующие во взаимодействии объекта в виде вершин графа. Затем связи, соединяющие эти объекты, изображаются в вид дуг этого графа. Наконец, связи дополняются сообщениями, которые объекты при нимают и посылают. Это дает пользователю ясное визуальное представление о по токе управления в контексте структурной организации кооперирующихся объектов.

    Диаграмма компонентов (Component diagram) показывает набор компонентов и отношения между ними. Графически диаграмма компонентов представляется в виде графа с ребрами и вершинами.

    На диаграмме развертывания, или применения (Deployment diagram), показана конфигурация обрабатывающих узлов, на которых выполняется система, и компонентов, размещенных в этих узлах. Диаграмма развертывания представлена в виде графа с ребрами и вершинами.

    Диаграммы состояний - это один из пяти видов диаграмм в языке UML, используемых для моделирования динамических аспектов системы. Диаграмма состояний показывает автомат. Ее частной разновидностью является диаграмма деятельности, в которой все или большая часть состояний - это состояния деятельности, а все или большая часть переходов инициируются в результате завершения деятельности в исходном состоянии. Таким образом, при моделировании жизненного цикла объекта полезны как диаграммы деятельности, так и диаграммы состояний. Но если диаграмма деятельности показывает поток управления от деятельности к деятельности, то на диаграмме состояний представлен поток управления от состояния к состоянию.

    Все диаграммы UML можно условно разбить на две группы, первая из которых ‒ общие диаграммы. Общие диаграммы практически не зависят от предмета моделирования и могут применяться в любом программном проекте без оглядки на предметную область, область решений и т.д.

    1.5.1. Диаграмма использования

    Диаграмма использования (use case diagram) ‒ это наиболее общее представление функционального назначения системы.

    Диаграмма использования призвана ответить на главный вопрос моделирования: что делает система во внешнем мире?

    На диаграмме использования применяются два типа основных сущностей: варианты использования 1 и действующие лица 2 , между которыми устанавливаются следующие основные типы отношений:

    • ассоциация между действующим лицом и вариантом использования 3 ;
    • обобщение между действующими лицами 4 ;
    • обобщение между вариантами использования 5 ;
    • зависимости (различных типов) между вариантами использования 6 .

    На диаграмме использования, как и на любой другой, могут присутствовать комментарии 7 . Более того, это настоятельно рекомендуется делать для улучшения читаемости диаграмм.

    Основные элементы нотации, применяемые на диаграмме использования, показаны ниже. Детальное описание приведено в разделе 2.2 .

    1.5.2. Диаграмма классов

    Диаграмма классов (class diagram) ‒ основной способ описания структуры системы.

    Это не удивительно, поскольку UML в первую очередь объектно-ориентированный язык, и классы являются основным (если не единственным) "строительным материалом".

    На диаграмме классов применяется один основной тип сущностей: классы 1 (включая многочисленные частные случаи классов: интерфейсы, примитивные типы, классы-ассоциации и многие другие), между которыми устанавливаются следующие основные типы отношений:

    • ассоциация между классами 2 (с множеством дополнительных подробностей);
    • обобщение между классами 3 ;
    • зависимости (различных типов) между классами 4 и между классами и интерфейсами.

    Некоторые элементы нотации, применяемые на диаграмме классов, показаны ниже. Детальное описание приведено в главе 3 .

    1.5.3. Диаграмма автомата

    Диаграмма автомата (state machine diagram) ‒ это один из способов детального описания поведения в UML на основе явного выделения состояний и описания переходов между состояниями.

    В сущности, диаграммы автомата, как это следует из названия, представляют собой граф переходов состояний (см. главу 4), нагруженный множеством дополнительных деталей и подробностей.

    На диаграмме автомата применяют один основной тип сущностей ‒ состояния 1 , и один тип отношений ‒ переходы 2 , но и для тех и для других определено множество разновидностей, специальных случаев и дополнительных обозначений. Перечислять их все во вступительном обзоре не имеет смысла.

    Детальное описание всех вариаций диаграмм автомата приведено в разделе 4.2 , а на следующем рисунке показаны только основные элементы нотации, применяемые на диаграмме автомата.

    1.5.4. Диаграмма деятельности

    Диаграмма деятельности (activity diagram) ‒ способ описания поведения на основе указания потоков управления и потоков данных.

    Диаграмма деятельности ‒ еще один способ описания поведения, который визуально напоминает старую добрую блок-схему алгоритма. Однако за счет модернизированных обозначений, согласованных с объектно-ориентированным подходом, а главное, за счет новой семантической составляющей (свободная интерпретация сетей Петри), диаграмма деятельности UML является мощным средством для описания поведения системы.

    На диаграмме деятельности применяют один основной тип сущностей ‒ действие 1 , и один тип отношений ‒ переходы 2 (передачи управления и данных). Также используются такие конструкции как развилки, слияния, соединения, ветвления 3 , которые похожи на сущности, но таковыми на самом деле не являются, а представляют собой графический способ изображения некоторых частных случаев многоместных отношений. Семантика элементов диаграмм деятельности подробно разобрана в главе 4 . Основные элементы нотации, применяемые на диаграмме деятельности, показаны ниже.

    1.5.5. Диаграмма последовательности

    Диаграмма последовательности (sequence diagram) ‒ это способ описания поведения системы на основе указания последовательности передаваемых сообщений.

    Фактически, диаграмма последовательности ‒ это запись протокола конкретного сеанса работы системы (или фрагмента такого протокола). В объектно-ориентированном программировании самым существенным во время выполнения является пересылка сообщений между взаимодействующими объектами. Именно последовательность посылок сообщений отображается на данной диаграмме, отсюда и название.

    На диаграмме последовательности применяют один основной тип сущностей ‒ экземпляры взаимодействующих классификаторов 1 (в основном классов, компонентов и действующих лиц), и один тип отношений ‒ связи 2 , по которым происходит обмен сообщениями 3 . Предусмотрено несколько способов посылки сообщений, которые в графической нотации различаются видом стрелки, соответствующей отношению.

    Важным аспектом диаграммы последовательности является явное отображение течения времени. В отличие от других типов диаграмм, кроме разве что диаграмм синхронизации, на диаграмме последовательности имеет значение не только наличие графических связей между элементами, но и взаимное расположение элементов на диаграмме. А именно, считается, что имеется (невидимая) ось времени, по умолчанию направленная сверху вниз, и то сообщение, которое отправлено позже, нарисовано ниже.

    Ось времени может быть направлена горизонтально, в этом случае считается, что время течет слева направо.

    На следующем рисунке показаны основные элементы нотации, применяемые на диаграмме последовательности. Для обозначения самих взаимодействующих объектов применяется стандартная нотация ‒ прямоугольник с именем экземпляра классификатора. Пунктирная линия, выходящая из него, называется линией жизни (lifeline) 4 . Это не обозначение отношения в модели, а графический комментарий, призванный направить взгляд читателя диаграммы в правильном направлении. Фигуры в виде узких полосок, наложенных на линию жизни, также не являются изображениями моделируемых сущностей. Это графический комментарий, показывающий отрезки времени, в течении которых объект владеет потоком управления (execution occurrence) 5 или другими словами имеет место активация (activation) объекта. Составные шаги взаимодействия(combined fragment) 6 позволяют на диаграмме последовательности, отражать и алгоритмические аспекты протокола взаимодействия. Прочие детали нотации диаграммы последовательностей см. в главе 4 .

    1.5.6. Диаграмма коммуникации

    Диаграмма коммуникации (communication diagram) ‒ способ описания поведения, семантически эквивалентный диаграмме последовательности.

    Фактически, это такое же описание последовательности обмена сообщениями взаимодействующих экземпляров классификаторов, только выраженное другими графическими средствами. Более того, большинство инструментов умеет автоматически преобразовывать диаграммы последовательности в диаграммы коммуникации и обратно.

    Таким образом, на диаграмме коммуникации также как и на диаграмме последовательности применяют один основной тип сущностей ‒ экземпляры взаимодействующих классификаторов 1 и один тип отношений ‒ связи 2 . Однако здесь акцент делается не на времени, а на структуре связей между конкретными экземплярами.

    На рисунке показаны основные элементы нотации, применяемые на диаграмме коммуникации. Для обозначения самих взаимодействующих объектов применяется стандартная нотация ‒ прямоугольник с именем экземпляра классификатора. Взаимное положение элементов на диаграмме кооперации не имеет значения ‒ важны только связи (чаще всего экземпляры ассоциаций), вдоль которых передаются сообщения 3 . Для отображения упорядоченности сообщений во времени применяется иерархическая десятичная нумерация.

    1.5.7. Диаграмма компонентов

    Диаграмма компонентов (component diagram) ‒ показывает взаимосвязи между модулями (логическими или физическими), из которых состоит моделируемая система.

    Основной тип сущностей на диаграмме компонентов ‒ это сами компоненты 1 , а также интерфейсы 2 , посредством которых указывается взаимосвязь между компонентами. На диаграмме компонентов применяются следующие отношения:

    • реализации между компонентами и интерфейсами (компонент реализует интерфейс);
    • зависимости между компонентами и интерфейсами (компонент использует интерфейс) 3 .

    На рисунке показаны основные элементы нотации, применяемые на диаграмме компонентов. Детальное описание приведено в главе 3 .

    1.5.8. Диаграмма размещения

    Диаграмма размещения (deployment diagram) наряду с отображением состава и связей элементов системы показывает, как они физически размещены на вычислительных ресурсах во время выполнения.

    Таким образом, на диаграмме размещения, по сравнению с диаграммой компонентов, добавляется два типа сущностей: артефакт 1 , который является реализацией компонента 2 и узел 3 (может быть как классификатор, описывающий тип узла, так и конкретный экземпляр), а также отношение ассоциации между узлами 4 , показывающее, что узлы физически связаны во время выполнения.

    На рисунке показаны основные элементы нотации, применяемые на диаграмме размещения. Для того чтобы показать, что одна сущность является частью другой, применяется либо отношение зависимости «deploy» 5 , либо фигура одной сущности помещается внутрь фигуры другой сущности 6 . Детальное описание диаграммы приведено в главе 3 .