Три типа логических моделей данных. Логические модели и виды баз данных. Иерархическая модель данных

Ядром любой базы данных является модель данных. Модель данных - это совокупность структур данных и операций их обработки.

По способу установления связей между данными различают иерархическую, сетевую и реляционную модели.

Иерархическая модель позволяет строить базы данных с древовидной структурой, где каждый узел содержит свой тип данных (сущность). На верхнем уровне дерева в этой модели имеется один узел - корень, на следующем уровне располагаются узлы, связанные с этим корнем, затем узлы, связанные с узлами предыдущего уровня и т.д.

При этом каждый узел может иметь только одного предка (рис. 1.2).

Поиск данных в иерархической системе всегда начинается с корня. Затем производится спуск с одного уровня дерева на другой, пока не будет достигнут искомый уровень. Перемещения по системе от одной записи к другой осуществляются с помощью ссылок.

Основные достоинства иерархической модели - простота описания иерархических структур реального мира и быстрое выполнение запросов. Однако не всегда удобно каждый раз начинать поиск нужных данных с корня, а другого способа перемещения по базе в иерархических структурах нет.

Указанный недостаток снят в сетевой модели, где (по крайней мере, теоретически) возможны связи всех информационных объектов со всеми.

В примере, приведенном на рис. 1.3, каждый преподаватель может обучать многих (теоретически всех) студентов и каждый сту дент может обучаться у многих (теоретически у всех) преподавателей. Поскольку на практике это, естественно, невозможно, приходится прибегать к некоторым ограничениям.

Использование иерархической и сетевой моделей ускоряет доступ к информации в базе данных. Однако, поскольку каждый элемент данных должен содержать ссылки на некоторые другие элементы, требуются значительные ресурсы как дисковой, так и основной памяти ЭВМ. Недостаточность основной памяти, конечно, снижает скорость обработки данных. Кроме того, для таких моделей характерна сложность реализации системы управления базами данных.



Реляционная модель (от англ. relation - отношение) была разработана в начале 70-х годов XX в. Коддом. Простота и гибкость этой модели привлекли к ней внимание разработчиков, и уже 80-х годах XX в. она получила широкое распространение. Таким образом реляционные СУБД оказались промышленным стандартом.

Реляционная модель опирается на систему понятий реляционной алгебры, важнейшими из которых являются таблица, строка, столбец, отношение и первичный ключ, а все операции в этом случае сводятся к манипуляциям с таблицами.

В реляционной модели информация представляется в виде прямоугольных таблиц, каждая из которых состоит из строк и столбцов и имеет имя, уникальное внутри базы данных.

Таблица отражает объект реального мира - сущность, а каждая ее строка (запись) отражает один конкретный экземпляр объекта - экземпляр сущности. Каждый столбец таблицы имеет уникальное для данной таблицы имя. Располагаются столбцы в соответствии с порядком следования их имен, принятом при создании таблицы.

Рис. 1.2. Иерархическая древовидная структура модели БД

Рис. 1.3. Сетевая структура модели БД

В отличие от столбцов строки не имеют имен, порядок их следования в таблице не определен, а число - логически не ограничено. Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции. Номер, имеющийся в файле у каждой

строки, не характеризует ее, так как его значение изменяется при удалении строк из таблицы. Логически не существует первой и последней строк.

Реляционные системы исключили необходимость сложной навигации, поскольку данные представлены в них не в виде одного файла, а независимыми наборами, и для отбора данных используются операции реляционной алгебры - прикладной теории множеств.

В каждой таблице реляционной модели должен быть столбец (или совокупность столбцов), значение которого однозначно идентифицирует каждую ее строку. Этот столбец (или совокупность столбцов) и называется первичным ключом таблицы (рис. 1.4).

Если таблица удовлетворяет требованию уникальности первичного ключа, она называется отношением. В реляционной модели все таблицы должны быть преобразованы в отношения. Отношения реляционной модели связаны между собой. Связи поддерживаются внешними ключами. Внешний ключ - это столбец (совокупность столбцов), значение которого однозначно характеризует значения первичного ключа другого отношения (таблицы).

Говорят, что отношение, в котором определен внешний ключ, ссылается на соответствующее отношение, в котором та же совокупность столбцов является первичным ключом.

В приведенном на рис. 1.4 примере отношение СОТРУДНИК ссылается на отношение ОТДЕЛ через название отдела.

Схема реляционной таблицы (отношения) представляет собой совокупность имен полей, образующих ее запись:

НАЗВАНИЕ ТАБЛИЦЫ (Поле 1, Поле 2.....Поле п).

Например, для таблиц, показанных на рис. 1.4, имеем следующие схемы (курсивом выделены первичные ключи):

СОТРУДНИК (Номер пропуска, ФИО, Должность, Название отдела, Телефон);

ОТДЕЛ (Название отдела. Расположение отдела, Назначение отдела).

Объектно-ориентированная модель баз данных начала разрабатываться в связи с появлением объектно-ориентированных языков программирования в 90-е годы XX века. Такого рода базы хранят методы классов, а иногда и постоянные объекты классов, что позволяет осуществлять беспрепятственную интеграцию между данными и их обработкой в приложениях.

Доминирование реляционной модели в современных СУБД определяется:

наличием развитой теории (реляционной алгебры);

наличием аппарата сведения других моделей данных к реляционной модели;

наличием специальных средств ускоренного доступа к информации;

наличием стандартизированного высокоуровневого языка запросов к БД, позволяющего манипулировать ими без знания конкретной физической организации БД во внешней памяти.

Аннотация

В данной курсовой работе описывается проектирование базы данных центральной городской больницы и ее реализация в Oracle Datebase. Была представлена предметная область, разработаны концептуальная, логическая и физическая модели данных. Средствами Oracle Datebase созданы необходимые таблицы, запросы, отчеты. Курсовая работа состоит из.

Введение 3

1.Предметная область 4

2.Концептуальная модель 5

3.Логическая модель базы данных 7

4.Модель физической организации данных 9

5.Реализация баз данных в Oracle 9

6.Создание таблиц 10

7.Создание запросов 16

8.Заключение 27

Список литературы 28

Введение

База данных – это единое, вместительное хранилище разнообразных данных и описаний их структур, которое после своего определения, осуществляемого отдельно и независимо от приложений, используется одновременно многими приложениями.

Кроме данных база данных может содержать средства, позволяющие каждому из пользователей оперировать только теми данными, которые входят в его компетенцию. В результате взаимодействия данных, содержащихся в базе, с методами, доступными конкретным пользователям, образуется информация, которую они потребляют и на основании которой в пределах собственной компетенции производят ввод и редактирование данных

Целью данной курсовой работы является разработка и реализация базы данных для центральной больницы, что бы обеспечить хранение, накопление и предоставление информации о деятельности больницы. Создаваемая база данных предназначена в основном для автоматизации деятельности основных подразделений больницы.

Предметная область

Предметной областьюназывается часть реальной системы, представляющая интерес для данного исследования. При проектировании автоматизированных информационных систем предметная область отображается моделями данных нескольких уровней. Число уровней зависти от сложности решаемых задач, но в любом случае включает концептуальный и логический уровни.

В данной курсовой работе предметной областью является работа центральной больницы, которая занимается лечением больных. Организационная структура больницы состоит из двух отделов: регистратуры и приёмного покоя. В регистратуре проводятся записи на приём, выдаются направления, распределяют пациентов по палатам, фиксируют номера страховых полюсов. Приёмный покой, в свою очередь, ведет учет поступления и выписки, диагнозы пациентов, историю болезни.

База данных предназначена для хранения данных о больных, их размещении, выписываемых препаратах и о лечащих врачах.


Концептуальная модель

Первая фаза процесса проектирования базы данных заключается в создании для анализируемой части предприятия концептуальной модели данных.

Концептуальная модель - это модель предметной области. Компонентами модели являются объекты и взаимосвязи. Концептуальная модель служит, средством общения между различными пользователями и поэтому разрабатывается без учета особенностей физического представления данных. При проектировании концептуальной модели все усилия разработчика должны быть направлены в основном на структуризацию данных и выявление взаимосвязей между ними без рассмотрения особенностей реализации и вопросов эффективности обработки. Проектирование концептуальной модели основано на основе анализа решаемых на этом предприятии задач по обработке данных. Концептуальная модель включает описания объектов и их взаимосвязей, представляющих интерес в рассматриваемой предметной области. Взаимосвязи между объектами являются частью концептуальной модели и должны отображаться в базе данных. Взаимосвязь может охватывать любое число объектов. С другой стороны, каждый объект может участвовать в любом числе связей. Наряду с этим существуют взаимосвязи между атрибутами объекта. Различают взаимосвязи типа: "один к одному", "один ко многим", "многие ко многим".

Самой популярной моделью концептуального проектирования является модель «сущность-связь» (ER-модель), она относится к семантическим моделям.

Основными элементами модели являются сущности, связи между ними и их свойства (атрибуты).

Сущность – это класс однотипных объектов, информация о которых должна быть учтена в модели.

Каждая сущность должна иметь наименование, выраженное существительным в единственном числе. Каждая сущность в модели изображается в виде прямоугольника с наименованием.

Атрибут – характеристика (параметр) не которой сущности.

Домен – множество значений (область определения атрибутов).

У сущностей выделяются ключевые атрибуты – ключ сущности – это один или более атрибутов, уникально определяющих данную сущность.

Набор сущностей для центральной больницы (в скобках указаны атрибуты сущностей, подчёркнуты ключевые атрибуты):

ПАЦИЕНТЫ (Код пациента , фамилия, имя, дата рождения, номер страхового полиса, код отделения);

ЛЕЧЕНИЕ (Код больного , диагноз, дата выписки, код врача, стоимость);

ОТДЕЛЕНИЯ(Код отделения , название отделения, количество палат);

ПОСТУПЛЕНИЯ (Код больного, дата поступления, код палаты);

ПАЛАТЫ (Код палаты , кол-во мест, код отделения);

ВРАЧИ (Код врача, фамилия, имя, дата рождения, номер личного дела, код отделения);

Диаграмма «сущность-связь» для районной больницы изображена на рисунке 1.


Логическая модель базы данных

Версия концептуальной модели, которая может быть обеспечена конкретной СУБД, называется логической моделью. Процесс построения логической модели базы данных должен опираться на определённую модель данных (реляционная, сетевая, иерархическая), которая определяется типом предполагаемой для реализации информационной системы СУБД. В нашем случае база данных создается в среде Oracle и будет представлять собой реляционную базу данных.

Реляционная модель характеризуется своей простотой структуры данных, удобным для пользователя табличным представлением и возможностью использования формального аппарата алгебры отношений и реляционного исчисления для манипулирования данными..

В реляционных моделях данных объекты и взаимосвязи между ними представляются с помощью таблиц. Каждая таблица представляет один объект и состоит из строк и столбцов. Таблица в реляционной модели называется отношением.

Атрибут (поле) – любой столбец в таблице.

Кортежи (записи) – строки таблицы.

Таблицы связаны между собой при помощи ключевых полей.

Ключ – это поле, позволяющее однозначно идентифицировать запись в таблице. Ключ может быть простым (состоит из одного поля) или составным (из нескольких полей).

В реляционных базах данных логическое проектирование приводит к разработке схемы данных, которая представлена на рисунке 2.

Рис.2.
4. Модель физической организации данных

Физическая модель данных описывает то, как данные хранятся в компьютере, представляя информацию о структуре записей, их упорядоченности и существующих путях доступа.

В физической модели описываются типы, идентификаторы и разрядность полей. Физическая модель данных отражает физическое размещение данных на машинных носителях, то есть какой файл, какие объекты, с какими атрибутами содержит и каковы типы этих атрибутов.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26

  1. определение типов и моделей данных
  2. иерархическая и сетевая модели
  3. реляционная модель.

В языке высокого уровня поддерживаются достаточно развитые типы данных, включая простые, структурированные, ссылочные и абстрактные (объекты). Простые типы являются базовыми по отношению к ЭВМ и различаются как целый, вещественный, логический, литерный и т.д. Тип данных – это совокупность структуры данных, операций, накладываемых на данные, и ограничений целостности, то есть мероприятий, которые обеспечивают корректную работу операций с данным типом. Структурный тип предназначен для конструирования из конечного набора базовых типов сложных структур данных. Выделим три основные структурных типа: запись (структура), массив, файл, рекурсивная структура. Массив – совокупность данных одного типа. Операции работы с массивом: создание, задание изначальных значений элементов массива, выбор элементов по значению индексов (порядковому номеру) и избирательное обновление элементов. Ограничения целостностями – это то, что все элементы одного типа и индекс – целое число. Структура (тип записи) – совокупность элементов разного типа. Например, структура – сотрудник включает элементы табельный номер, ФИО, дата рождения. Структура не используется в чистом виде, а для конструирования более сложных типов, в частности файлов. Файл – это совокупность записей одинаковой структуры (массив структур). Файл хранится на жестком диске и предназначен для хранения данных. Функции с файлом: создать, установить указатель на начало файла, записать в конец файла новую запись, считать информацию по указателю и получить указатель на конец файла. Рекурсивный тип – образуется суперпозиция типов данных в целях получения более сложных структур, например, деревьев, поддерживается с помощью указателей.

Ссылочный тип – указатель – это адрес памяти. Всё дисковое пространство разделено на страницы (2, 4, 8 и т.д. килобайт), и адрес памяти – это номер страницы + относительный номер байта внутри страницы. Абстрактный тип (объект) – это интерпретируемый структурированный тип с функциями, определенными над его элементами. При этом определяются имена, типы элементов, функции (методы), а также правила (ограничения целостности) применения этих функций к описанным элементам. Для поддержания во внешней дисковой памяти более сложных структур данных на уровне СУБД поддерживаются модели данных, включая иерархическую, сетевую и реляционную. Модель данных – это совокупность структур данных и правил их порождения, операций над ними и ограничений целостности как перечень мероприятий, направленных на поддержание БД в актуальном состоянии. Целостность – это точность, корректность данных в базе в любой момент времени. Ограничение целостности – набор мероприятий, направленных на поддержание целостности базы и корректности выборки информации.

Иерархическая и сетевая модель данных.

На первых этапах внедрения БД (50–80 годы) широко использовались СУБД первого поколения на ЕС ЭВМ – иерархические и сетевые СУБД.

Иерархическая модель организует структуру в виде упорядоченного дерева, вершины (узлы) соответствуют сущностям и называются типами записей. Тип записи может состоять из нескольких элементов, а дуга, связывающая типы, называется «исходный-порожденный» и соответствует типу «один ко многим» (одному экземпляру исходной записи соответтствует ноль, один или несколько порожденных записей). Доступ к каждому узлу осуществляется по иерархическому пути – это последовательность типов записей от корня дерева. Верхняя вершина – корень, последняя – лист, много деревьев – лес. Расширением типа записи является таблица, а расширением связи – множество соединений между строками таблиц. Каждая строка таблицы – это экземпляр типа записи. Ограничением целостности является то, что в вершину всегда входит только одна дуга. Операции: включение данных (экземпляр порожденной записи не может существовать в отсутствии экземпляра исходной), которое осуществляется по иерархическому пути (указываются ключи записи); удаление данных (при удалении экземпляра исходной записи автоматически удаляются все экземпляры порожденных, так как экземпляры записей реализуются посредством указателей); извлечение данных осуществляется по иерархическому пути посредством указания ключей записей; обновление данных – изменение значений производится только над извлеченными записями. В экземпляре записи всегда есть ячейка с указателем на брата и на сына. Таким образом, связи в иерархической модели основаны на указателях. Для того, чтобы реализовать концептуальную модель предметной области нужно ввести 6 иерархических структуры: материал – деталь – поставка, склад – деталь – поставка, город – поставщик – поставка, материал – деталь – отпуск, склад – деталь – отпуск, клиент – отпуск.

Достоинством иерархической модели является простота и интуитивное восприятие информации. В настоящее время поисковые системы (над реляционными базами) основаны на построении навигационного иерархического интерфейса. Недостатком этой модели является искусственный с избыточностью подход реализации связей «многие ко многим» и процедурность операций манипулирования данными.

Представим для примера реализацию на иерархической модели базы данных «склад деталей».

Для реализации базы «склад деталей» на иерархической СУБД необходимо формирование как минимум четырех иерархических структур (лес). Так как отношение «поставщик–деталь», «клиент–деталь» являются «многие ко многим», поэтому необходима избыточность на уровне модели БД. Связь «многим ко многим» развязываются 2 иерархиями.

Сетевая модель.

Это ориентированный граф, в узлах которого расположены типы записей, граф произвольного вида и в вершину может входить несколько дуг. Идея сетевой модели предложена ассоциацией КОДАСИЛ. Характеристика модели КОДАСИЛ:

  1. элемент данных – базовая поименованная единица
  2. агрегат – совокупность данных: массив, структура
  3. запись – поименованная совокупность элементов и/или агрегатов данных
  4. набор – поименованная совокупность записей, образующих двухуровневую иерархическую структуру «исодный–порожденный». Каждый тип набора представляет собой отношение между двумя типами записей. Каждый экземпляр набора содержит один экземпляр записи «владелец» и ноль, один или несколько экземпляров «член набора».

Сеть – это совокупность иерархий.

Ограничением целостности является следующее: в конкретном экземпляре набора экземпляр «член набора» не может иметь более одного экземпляра записи «владелец». Таким образом сеть набирается совокупностью иерархий «один ко многим». Операции: извлечь – извлечь запись можно по ключу, от извлеченной записи возможен переход к подчиненным; включить – можно в ранее объявленный набор, а можно в т.н. сингулярный набор, у которого пока нет владельца; переключить – из одного набора в другой; удалить – удаляется не запись, а связи; модифицировать – изменить значение аргументов в выбранной записи. Достоинства – простота реализации связи «многие ко многим».

Сетевые СУБД – IDMS –> СЕТЬ и СЕТОР.

Сетевые модели хороши для реализации технических коммуникаций (описание электрических сетей, тепловых сетей) и применяются в инженерных расчетах. В настоящее время реализуются либо как собственные разработки, либо на ОО СУБД.

Пример сетевой модели базы «склад деталей».

Таким образом в БД хранятся экземпляры типов записей «город», «поставщик», «поставка», «деталь» и т.д., которые связаны в рамках определенных экземпляров наборов отношениями «один ко многим». Например, деталь 1 в типе набора «деталь – поставка» является владельцем экземпляров поставка 2 и поставка 6, а деталь 2 в этом типе набора является владельцем поставки 1, 2, 7. Деталь 1 и 2 находятся в разных связках, то есть в разных экземпляров набора.

К ранним видом СУБД относятся псевдореляционные. Они получили распространение на ПЭВМ, это системы dBase группы. К ним относятся Clipper, FoxPro, FoxBase. В этих системах каждая таблица (тип записи) хранится в отдельном файле с расширением dbf, например, отдельно файл «Город», файл «Поставщик» и т.д. Между файлами связи поддерживались на программном уровне в клиентском приложении. Для каждого файла создавались индексы для обеспечения быстрого доступа к записям файлов по ключу. Далее мы перейдем к реляционной модели, которая поддерживает ссылочную целостность между сущностями.

Реляционная модель данных.

Характеристика модели.

Предложил концепцию реляционной модели Эдвард Кодд, он предложил вложить в основу алгебру отношений. В основе реляционной модели лежит понятие теоретико-множественных отношений – это подмножество декартова произведения доменов, а домен – это множество значений, которые принимает атрибут (множество названий городов, фамилий сотрудников). Отношение (таблица) – подмножество декартова произведения одного или более доменов.

Имя отношения
А1 А2 А3 А4 – атрибуты
А11 А12 А13 А14 – кортежи выборки
А21 А22 А23 А24
А31 А32 А33 А34

А11, А12 – это значения атрибутов.

Реляционная база данных – это множество связанных между собой отношений (таблиц), и при этом связи между таблицами задаются посредством внешних или вторичных ключей, то есть атрибутов таблиц, которые в каких-то других отношениях являются первичными. Список имен атрибутов называется схемой отношения. Каждое отношение имеет уникальное имя. Свойства отношений: нет одинаковых кортежей – все записи отличаются по первичному ключу; кортежи не упорядочены сверху вниз; атрибуты не упорядочены слева направо (в операциях реляционной алгебры строки и столбцы отношений могут просматриваться в любом порядке и последовательности безотносительно к их информационному содержанию смыслу); все значения – скалярные и все элементы столбца имеют одинаковую природу, так как построены на одном домене. Отношение с такими свойствами называется нормализованным. В отношении один или несколько атрибутов являются ключом, то есть однозначно характеризует кортеж. Свойства ключа: уникальная идентификация выборки, неизбыточность (удаление любого атрибута лишает его свойства уникальности). Наряду со смысловым ключом используется инкрементный (счетчик), состоящий из одного числового поля, который автоматически наращивается.

Правила отображения концептуальной модели предметной области в реляционную БД.

На рисунке 5 изображена концептуальная модель. Отобразим её в реляционную.

  1. отображение сущностей в реляционные отношения, которые нормализованы
  2. отображение ассоциаций связано с использованием ссылочной целостности между таблицами. Ассоциативное отношение 1:1, 1:М, М:1 реализуются посредством помещения внешнего вторичного ключа в сущность, из которой исходит стрелка ассоциации. Этот ключ соответствует первичному ключу, на который указывает стрелка. Связи «многие ко многим» требует ведения перекрестной таблицы, в которую включается в качестве вторичных ключей первичные ключи связываемых сущностей.

  1. отображение агрегации осуществляется с помощью ассоциаций, при этом заводится отдельная таблица «часть» с вторичным ключом, связывающим её с таблицей владельцев (целое)
  2. отображение обобщения чаще всего осуществляется посредством отображения каждого подтипа в отдельную таблицу с включением в неё вторичного ключа, соответствующего первичному ключу таблицы супертипа. Пример: «клиент» (код клиента ) для подтипов «организация» (ОГРН , код клиента), «ИП» (ИНН , код клиента).

Целостность реляционной модели.

Целостность объектов (отношений) – в базе не допускается, чтобы какой-либо атрибут из первичного ключа принимал неопределенные значения.

Ссылочная целостность – БД не должна содержать несогласованных значений внешних ключей (FK). Если отношение R2 имеет среди своих атрибутов какой-то внешний ключ, который соответствует первичному ключу (PK) отношения R1, то каждое значение FK должно быть равно значению РК. Пример: все коды материалов таблицы «деталь» должны присутствовать как первичные ключи в таблице материалов.

Любой объект, описанный в форматах пространственных данных, имеет атрибутику, жестко-привязанную к пространственным данным и хранящуюся в таблицах БД. Поля и строки атрибут данных подлежат корректировки, исправлению, дополнению. Такая организация данных ГИС позволяет получить мгновенную информацию об атрибутах пространственных объектов. Эта информация получается путем включения коммуникационных структур, которые создаются на основании запросов, написанных на специальном языке SQL - structured query language - язык структурированных запросов. Структурирование данных в базах данных называется логической моделью построения баз и банков данных.

Выделяются следующие виды логических моделей баз и банков данных:

  • 1. Иерархические
  • 2. Сетевые модели
  • 3. Относительные модели.
  • 4. Объектно-ориентированные.

Иерархические модели являются наиболее старыми и наиболее эффективно-эксплуатируемыми в базах и банках данных. Имеют структуру дерева, в которой можно выделить корневые - исходные объекты и конечные.

Объекты в данной логической модели описываются соотношениями, каждая основная материнская база данных может иметь множество дочерних БД, каждая дочерняя или подчиняющаяся БД, может принадлежать только одной главной материнской базе.

Достоинства иерархической модели данных:

  • 1. Легкая для понимания.
  • 2. Обеспечивается быстрый доступ к данным с помощью ключа объекта. Наилучший эффект от использования иерархической модели данных достигается при кодировании объектов на следующих иерархических структурах административного устройства.

Недостатки:

Данные в этой модели сохраняются долго и много раз, изменение данных приводит к изменению всей структуры логической модели.

В отличие от иерархических моделей, сетевые модели используют разные типы взаимоотношений между объектами БД. Наряду со стандартным отношением: 1:М - один к множеству, используется M:N - множество к множеству. В этом случае дочерний объект может принадлежать множеству материнских БД, а также множество дочерних объектов может быть взаимосвязано с множеством материнских БД.

Достоинства:

Гибкость модели, способность быстро перестраиваться при изменении данных.

Недостатки:

Сложность при перестроении, при уничтожении какого-либо объекта БД.

Уничтожение объекта влечет за собой пересмотр всех дочерних и материнских БД, имеющих сетевые связи с данным объектом, поэтому более всего применяется следующий вид:

Реляционные (относительные) модели, описывающие отношения между объектами, в которых отношения записываются в виде таблицы.

Для таблицы наборов данных существует правило реляционной целостности, подразумевающие единство типов информации в строках и ячейках таблицы, единство типов значений и др. требования.

Обычно пространственные данные в этих БД представлены в виде векторных моделей.

Объектно-ориентированные БД включают три класса БД:

  • 1. Класс структурно объектно -ориентированные модели данных.
  • 2. Относительно объектно-ориентированные модели данных.
  • 3. Полные объектно-ориентированные модели данных.

Разница состоит в гибкости.

В структурно-ориентированных моделях данных элементарная частица информации рассматривается, как объект в банке данных.

Полные объектно-ориентированные модели содержат возможности обоих классов. Объект в этих база данных состоит из набора данных, характеризующих его состояние и определенное количество описаний операций и методов, которые он может использовать.

Достоинства объектно-ориентировочной модели:

  • 1. Объект является оптимальным образом для записей моделей реального мира.
  • 2. Является достаточно гибким для хранения информации о собственном образе жизни и развития.

Недостатки:

Такие модели требуют больших затрат времени и занимают огромный объем памяти.

ЛЕКЦИЯ

Логические модели данных.

Иерархические, сетевые, реляционные модели данных.

Принципы построения.

Преимущества и недостатки

В процессе развития теории систем баз данных термин «модель данных» имел разное содержание. Для более глубокого понимания существа отдельных понятий рассмотрим некоторые особенности использования этого понятия в контексте эволюции баз данных.

11.1. О понятии «модель данных»

Первоначально понятие модели данных употреблялось как синоним структуры данных в конкретной базе данных. Структурная трактовка полностью согласовывалась с математическим определением понятия модели как множества с заданными на нем отношениями. Но, следует отметить, что объектом моделирования в данном случае являются не данные вообще, а конкретная база данных. Разработки новых архитектурных подходов, основанных на идеях многоуровневой архитектуры СУБД, показали, что уже недостаточно рассматривать отображение представлений конкретной базы данных. Требовалось решение на метауровне, позволяющее оперировать множествами всевозможных допустимых представлений баз данных в рамках заданной СУБД или, что эквивалентно, инструментальными средствами, используемыми для их спецификации. В этой связи возникла потребность в термине, который обозначал бы инструмент, а не результат моделирования, и соответствовал бы, таким образом, множеству всевозможных баз данных некоторого класса. Т.е. инструмент моделирования баз данных должен включать не только средства структурирования данных, но и средства манипулирования данными. Поэтому модель данных в инструментальном смысле стала пониматься как алгебраическая система – множество всевозможных допустимых типов данных, а также определенных на них отношений и операций. Позднее в это понятие стали включать еще и ограничения целостности, которые могут налагаться на данные. В результате проблема отображения данных в многоуровневых СУБД и системах распределенных баз данных стала рассматриваться как проблема отображения моделей данных.

Важно подчеркнуть, что для разработчиков и пользователей СУБД точным определением реализованной в ней модели данных фактически являются языковые средства определения данных и манипулирования данными. Поэтому отождествлять такой язык со схемой базы данных (результатом моделирования) – конкретной спецификацией в этом языке – неправомерно.

Начиная с середины 70-х годов, под влиянием предложенной в тот период концепции абстрактных типов само понятие типа данных в языках программирования стало трансформироваться таким образом, что в него стали вкладывать не только структурные свойства, но и элементы поведения (изменения данных). В дальнейшем это послужило основой для формирования концепции объекта, на которой базируются современные объектные модели.

В связи с этим был предложен новый подход, при котором модель данных рассматривается как система типов. Такой подход обеспечивал естественные возможности интеграции баз данных и языков программирования, способствовал формированию направления, связанного с созданием так называемых систем программирования баз данных. Трактовке модели данных как системы типов соответствуют не только уже существующие широко используемые модели, но также объектные модели, завоевывающие все большее влияние.

Итак, модель данных – модель логического уровня проектирования БД. Ее можно рассматривать как сочетание трех компонентов (слайд 2 ):

1. Структурный компонент, т.е. набор правил, по которым может быть построена БД.

2. Управляющий компонент, определяющий типы допустимых операций с данными (сюда относятся операции обновления и извлечения данных, а также операции изменения структуры БД).

3. Поддержка набора (необязательная) ограничений целостности данных, гарантирующая корректность используемых данных.

С точки зрения структурного компонента выделяют модели на основе записей. В модели на основе записей структуру данных составляет совокупность нескольких типов записей фиксированного формата. Каждый тип записи определяет фиксированное количество полей, каждое из которых имеет фикси рованную длину.
Существуют три основных типа логических моделей данных на основе записей ( слайд 3 ):
- реляционная модель данных (relational data model );
- сетевая мо дель данных (network data model );
- иерархическая модель данных (hierarchical data model ).
Иерархическая и сетевая модели данных были созданы почти на десять лет раньше реляционной модели данных, потому их связь с концепциями традиционной обработки файлов более очевидна.

11.2. Реляционная модель данных

Реляционная модель данных основана на понятии математических отношений. В реляционной модели данные и связи представлены в виде таблиц, каждая из которых имеет несколько столбцов с уникальными именами. На слайде (слайд 4 ) показан пример реляционной схемы, содержащей сведения о кафедрах ВУЗа и кадровом составе. Например, из таблицы «Кадровый состав» видно, что сотрудник Иванов И.И. работает в должности заведующего кафедрой 22, которая, согласно данным из таблицы «Структура», расположена в корпусе А, в комнате 322. Здесь важно отметить, что между отношениями «Кадровый состав» и «Структура» существует следующая связь: сотрудник работает на кафедре. Однако между этими двумя отношениями нет явно заданной связи: ее существование можно заметить, только зная, что атрибут Каф в отношении «Кадровый состав» эквивалентен атрибуту Каф в отношении «Структура».

Необходимо отметить, что в реляционной модели данных единственное требова ние состоит в том, чтобы база данных с точки зрения пользователя выглядела как набор таблиц. Однако такое восприятие относится только к логической структуре базы данных, т.е. к внешнему и к концептуальному уровням архитек туры ANSI / SPARC . Оно не относится к физической структуре базы данных, ко торая может быть реализована с помощью разнообразных структур хранения.

На слайдах (слайды 5, 6 ) представлена реляционная модель данных для ПрО «сотрудники-проекты-детали-поставщики».

11.3. Сетевая модель данных

В сетевой модели данные представлены в виде коллекций записей, а связи в виде наборов. В отличие от реляционной модели, связи здесь явным образом моделируются наборами, которые реализуются с помощью указателей (слайд 5 ). Сетевую модель можно представить как граф с записями в виде узлов графа и наборами в виде его ребер. На слайде показан пример сетевой схемы для тех же наборов данных, которые показаны в реляционной модели.

Самой популярной сетевой СУБД является система IDMS / R фирмы Computer Associates .

На слайдах (слайды 8, 9 ) представлены варианты сетевой модели данных для ПрО «сотрудники-проекты-детали-поставщики».

11.4. Иерархическая модель данных

Иерархическая модель является ограниченным подтипом сетевой модели. В ней данные также представлены как коллекции записей, а связи – как наборы. Однако в иерархической модели узел может иметь только одного родителя. Иерархическая модель может быть представлена как древовидный граф с записями в виде узлов (которые также называются сегментами) и множествами в виде ребер (слайд 6 ). На слайде приведен пример иерархической схемы для тех же наборов данных, которые показаны в предыдущих моделях.

Самой распространенной иерархической СУБД является система IMS корпорации IBM , хотя она обладает также некоторыми другими неиерархическими чертами.

На слайдах (слайды 11, 12 ) представлена варианты иерархической модели данных для ПрО «сотрудники-проекты-детали-поставщики».

11.5. Преимущества и недостатки моделей

Основанные на записях (логические) модели данных используются для определения общей структуры базы данных и высокоуровневого описания ее реализации. Их основной недостаток заключается в том, что они не дают адекватных средств для явного указания ограничений, накладываемых на данные. В то же время в объектных моделях данных отсутствуют средства указания их логической структуры, но за счет предоставления пользователю возможности указать ограничения для данных они позволяют в большей мере представить семантическую суть хранимой информации.

Большинство современных коммерческих систем основано на реляционной модели, тогда как самые первые системы баз данных создавались на основе сетевой или иерархической модели. При использовании последних двух моделей от пользователя требуется знание физической организации базы данных, к которой он должен осуществлять доступ. При работе с реляционной моделью независимость от данных обеспечивается в значительно большей степени. Следовательно, если в реляционных системах для обработки информации в базе данных принят декларативный подход (т.е. они указывают, какие данные следует извлечь), то в сетевых и иерархических системах – навигационный подход (т.е. они указывают, как их следует извлечь).

Сетевые и иерархические структуры в основном ориентированы на то, чтобы связи между данными хранились вместе с самими данными. Такое объединение реализовалось, например, агрегированием данных (построением сложных понятийных структур и данных) или введением ссылочного аппарата, фиксирующего семантические связи, непосредственно в записи данных.

Табличная форма представления информации является наиболее распространенной и понятной. Кроме того, такие семантически более сложные формы, как деревья и сети, путем введения некоторой избыточности могут быть сведены к табличным. При этом связи между данными также будут представлены в форме двумерных таблиц.

Реляционный подход, в основе которого лежит принцип разделения данных и связей, обеспечивает с одной стороны независимость данных, а с другой – более простые способы реализации хранения и обновления.

Многомерные модели, коммерческие реализации которых появились в начале 90-х годов для поддержки технологий OLAP представляют собой некоторое расширение модели универсальных отношений новыми операционными возможностями, обеспечивающими, в частности, необходимые для OLAP функции агрегирования данных. Таким образом, многомерные модели представляют собой особую разновидность реляционной модели.

11.6. Документальные системы и интеграция моделей

Приведенные выше положения разрабатывались и действительно широко используются для баз данных хорошо структурированной информации. Однако уже сегодня одной из важнейших проблем становится обеспечение интеграции неоднородных информационных ресурсов, и в частности слабоструктурированных данных. Необходимость ее решения связывается со стремлением к полноценной интеграции систем баз данных в среду Web-технологий. При этом уже недостаточно простого обеспечения доступа к базе данных традиционным способом “из-под” HTML-форм. Нужна интеграция на модельном уровне. И в этом случае проблема семантической интероперабельности информационных ресурсов сводится к задаче разработки средств и технологий, предусматривающих явную спецификацию метаданных для ресурсов слабоструктурированных данных на основе традиционных технологий моделирования из области баз данных.

Именно на достижение этой цели направлены интенсивные разработки WWW -консорциумом языка XML и его инфраструктуры (фактически, новой модели данных для этой среды), объектной модели документов и других средств, которые, как можно ожидать, в близкое время станут основой технологий управления информационными ресурсами. Это направление связано с другой глобальной проблемой - организацией распределенных неоднородных информационных систем на основе построения репозиториев метаданных (этому понятию в классических работах по проектированию баз данных соответствует понятие словарь данных), обеспечивающих возможность семантического отождествления ресурсов и, таким образом, возможность их целенаправленного повторного использования.