Схемы генераторов звуковой частоты на транзисторах. Генератор звуковой частоты. Различают три основных вида импульсов

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

Для их проверки? Не солидно. Предлагаю потратить один приятный, творческий вечер на изготовление звукового пробника. Схема такого простейшего генератора сигналов приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 253-255 в 6-м издании или с 98-99 в 8-м издании).

Генератор представляет собой мультивибратор, собранный на транзисторах МП39-МП42, впрочем, для этой схемы подойдут практически любые исправные транзисторы. Резисторы R1-R4 типа МЛТ-0,125 или МЛТ-0,25. Конденсаторы C1 - С3 любого типа (например, К73-17 или К10-17Б). Устройство питается от гальванического элемента, напряжением 1,5 В. Ток, потребляемый устройством, около 0,5 мА.

При указанных в схеме параметрах деталей, генератор выдает импульсы с основной частотой около 1 кГц и амплитудой около 0,5 В. Основную частоту можно изменить, поставив конденсаторы С1 и С2 другой емкости. Мультивибратор помимо сигналов основной частоты выдает еще множество более высокочастотных гармоник. Так что этот генератор сигналов подходит для проверки, как тракта звуковой частоты приемника, так и высокочастотного тракта. Устройство собрано в корпусе дорожной мыльницы.

Плюсовой проводник снабжен зажимом «крокодил», а второй проводник выполнен в виде щупа из толстой медной проволоки. Для того, чтобы, сигналы генератора, не «просачивались» в схему минуя щупы, всю конструкцию надо заключить в экран, соединенный с положительным проводником. Естественно от всех других цепей экран надо изолировать. Роль экрана играет алюминиевая фольга. Спасибо за внимание. Автор статьи Лекомцев Д .

Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 - 5000 Гц . Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для проверки работы усилителей звуковой частоты.


Генератор звуковых частот описание работы схемы


Генератор звуковых частот схема на транзисторах

Два транзистора - полевой VT1 и биполярный VT2 - включены по схеме составного повторителя, имеющего небольшой коэффициент усиления и повторяющего на выходе фазу входного сигнала. Глубокая отрицательная обратная связь (ООС) через резисторы R7, R8 стабилизирует и усиление, и режим транзисторов.

Но для возникновения генерации нужна еще положительная обратная связь с выхода усилителя на его вход. Она осуществляется через так называемый мост Вина - цепочку из резисторов и конденсаторов R1...R4, С1...С6. Мост Вина ослабляет как низкие (из-за возрастающего емкостного сопротивления конденсаторов С4...С6), так и высокие (из-за шунтирующего действия конденсаторов С1...СЗ). На центральной же часто-те настройки, примерно равной 1/271RC, его коэффициент передачи максимален, а фазовый сдвиг равен нулю. На этой часто-те и возникает генерация.

Изменяя сопротивления резисторов и емкость конденсаторов моста, часто-ту генерации удается изменять в широких пределах. Для удобства пользования выбран десятикратный диапазон изменения частоты сдвоенным переменным резистором R2, R4, а диапазоны частот переключаются (Sla, Sib) конденсаторами C1...С6.

Для перекрытия всех звуковых частот от 25 Гц до 25 кГц достаточно трех диапазонов, но при желании можно добавить и четвертый, до 250 кГц (так сделано у автора). Выбрав несколько большие емкости конденсаторов или сопротивления резисторов, можно сместить диапазон частот вниз, сделав его, например, от 20 Гц до 200 кГц .

Следующий важный момент в проектировании звукового генератора - стабилизации амплитуды выходного напряжения. Для простоты здесь использован самый древний и надежный способ стабилизации - с помощью лампы накаливания. Дело в том, что сопротивление нити лампы возрастает при изменении температуры от холодного состояния до полного накала почти в 10 раз! Малогабаритная индикаторная лампочка VL1 с сопротивлением в холодном состоянии около 100 Ом включена в цепи ООС. Она шунтирует резистор R6, при этом ООС невелика, ПОС преобладает и возникает генерация. По мере роста амплитуды колебаний нить лампы нагревается, ее сопротивление растет, и ООС увеличивается, компенсируя ПОС и тем самым ограничивая рост амплитуды.

На выходе генератора включен ступенчатый делитель напряжения на резис-торах R10...R15, позволяющий получить калиброванный сигнал амплитудой от1 мВ до 1 В . Резисторы делителя распаяны прямо на выводах стандартного пятиштырькового разъема от аудиоаппаратуры. Питание генератор получает от любого источника (выпрямителя, аккумулятора, батареи), часто от того же самого, от которого питается и испытываемое устройство. Напряжение питания на транзисторах генератора стабилизировано цепочкой R11, VD1. Резистор R11 имеет смысл заменить такой же лампой накаливания, как и VL1 (индикаторная телефонная, в «карандашном» исполнении) - это расширит пределы возможных напряжений питания. Потребляемый ток - не более15...20 мА .

В генераторе можно применять детали практически любых типов, но особое внимание надо обратить на качество сдвоенного переменного резистора R2, R4. Автор применил довольно крупный прецизионный резистор от какой-то устаревшей аппаратуры, но подойдут и сдвоенные резисторы от регуляторов громкости или тембра стереоусилителей. Стабилитрон VD1 - любой маломощный, на напряжение стабилизации6,8...9 В .

При налаживании надо обратить внимание на плавность возникновения генерации примерно в среднем положении движка под-строечного резистора R8. При слишком малом его сопротивлении генерация может прекращаться в некоторых положениях ручки установки частоты, а при слишком большом может наблюдаться искажение синусоидальной формы сигнала - ограничение. Следует также измерить напряжение на коллекторе транзистора VT2, оно должно равняться примерно половине напряжения стабилизированного питания. При необходимости подбирают резистор R6 и, в крайнем случае, тип и экземпляр транзистора YT1. В ряде случаев помогает включение последовательно с лампой накаливания VL1 электролитического конденсатора емкостью не менее100 мкФ («плюсом» к истоку транзистора). В заключение резистором R10 выставляют на выходе амплитуду сигнала1 В и градуируют шкалу частоты с помощью цифрового частотомера. Она общая для всех диапазонов.

Особенностью данной схемы звукового генератора является та, что вней все построено на микроконтроллере ATtiny861 и SD карта памяти. Микроконтроллер Tiny861 ссостоит из двух ШИМ-генераторов и благодаря этому способен генерировать качественный звук, а кроме того способен управлять генератором внешними сигналами. Этот генератор звуковых частот можно использовать для проверки звучания высококачественной динамиков или в простых радиолюбительских самоделках типа электронного звонка.

Генератор звуковых частот схема на таймере

Генератор звуковых частот построен на популярной микросхеме таймере KP1006ВИ1 (почти по стандартной схеме. Частота выходного сигнала около 1000 Гц. Ее можно в большом диапазоне корректировать регулированием номиналов радиокомпонентов С2 и R2. Выходную часто-ту в этой конструкции рассчитывают по формуле:

F = 1,44/(R 1 +2×R 2)×C 2

Выход микросхемы не способен обеспечить большую мощность, поэтому на полевом транзисторе выполнен усилитель мощности.


Генератор звуковых частот на микросхеме и полевом ключе

Оксидный конденсатор С1 предназначен для сглаживания пульсаций блока питания. Емкость СЗ, подключённый к пятому выводу таймера используется для защиты от помех вывода управляющего напряжения.

Подойдет любой стабилизированный, с выходным напряжением от 9 до 15 вольт и током 10 А.

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 6,245 hits)

(130.7 KiB, 3,611 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.