Инверсная кинематика. Инверсная кинематика: простой и быстрый алгоритм. Использование и примеры

Мы поработали с инструментом Joint и разобрались, как он работает. Теперь давайте посмотрим, как можно управлять суставами более простым способом. В этой главе я расскажу про некоторые из таких средств, и затем мы сможем использовать их далее для риггинга нашего персонажа. И первым инструментом, с которым я вас познакомлю, это один из самых важных инструментов, о которых вы должны узнать – это инструмент IK Handle. Я просто расскажу, что такое инверсная кинематика (Inverse Kinematics), как она работает и основы того как ее настроить.

Инверсная кинематика - один из двух способов управлять суставами скелета. Первый способ называется Forward Kinematics (прямая кинематика), и по сути это вращение. С помощью него вы поворачиваете и возвращаете суставы на место и это, вероятнее всего, наиболее естественный способ манипулярования, так как наши суставы как раз просто поворачиваются в различных направлениях, а также вокруг друг друга. То есть каждое движение нашего тела - это поворот какого-то сустава.

Инверсная кинематика основана на понятии Goal - цель, то есть места, куда должен повернуться сустав. Это позволяет нам указать конечную позицию сустава при повороте. Самый простой способ запомнить это – понять что, прямая кинематика основана на вращении сустава, а инверсная кинематика основана на позиции сустава, в которой он должен оказаться в пространстве, когда мы вращаем его.

Давайте я вам быстро покажу пример. У меня здесь две одинаковые цепочки суставов. Первая цепочка суставов не имеет обратной кинематики, поэтому управление ею происходит через Forward kinematics, а на нашей правой цепочке у нас установлен IK Handle, позволяющий управлять суставами с использованием Inverse Kinematics. Я перейду к окну проекции вид сбоку. И я немного приближу модель в окне проекции, чтобы лучше видеть.

Еще раз, Forward Kinematics - это поворот. Я хочу выбрать конец этой цепочки суставов и переместить вот этот сустав в центр координат. Я буду вращать все эти суставы вокруг одной точки. Давайте сразу начнем это делать. Я нажму клавишу E, чтобы включить инструмент Rotate, и как видите, когда мы начинаем его вращать, то довольно непросто достичь цели при помощи одних только поворотов. Так что я поверну этот сустав вот так, а этот так, а этот снова поверну немного назад, и возможно нужно опять повернуть этот. Я сейчас делаю все на глаз, и не делаю слишком аккуратно при расположении этих суставов, потому что вращение и положение суставов не слишком совпадают друг с другом.

Inverse kinematics делает этот процесс гораздо более простым. Если мы хотим точно куда-то переместить эту цепочку с инверсной кинематикой, все, что мне нужно сделать, щелкнуть по этому крестику внизу, он называется IK Handle1. Теперь я могу нажать W, чтобы перейти к инструменту Move, и просто переместить мой сустав в цель.

Вот так просто. Мауа автоматически поворачивает все суставы равномерно, чтобы достичь цели. Но если же я например выведу сустав за пределы этой цели, у нас появляются проблемы. Поэтому мы не можем достичь любой точки, какой хотим, но если выбирать точки поближе, все получится. Как вы могли заметить, эти два метода используются в различных ситуациях.

Обычно Forward Kinematics дает нам более естественное перемещение, так как оно основано на поворотах, что очень натурально выглядит в анимации персонажей. Но оба метода имеют место быть. Я показал вам, как это работает, теперь давайте я покажу вам, как быстро их настроить. Давайте создадим новую сцену File / New Scene и получим пустое пространство. И перейдем к окну проекции вид сбоку. Я выберу Skeleton / Joint tool.

Давайте сделаем очень простую цепь суставов, состоящую из двух костей. Я щелкаю левой кнопкой здесь и создам сустав. Я немного смещусь сюда относительно центральной оси, и создам еще один сустав здесь. Мы получили небольшой угол здесь, который укажет Inverse kinematics, в какую сторону мы хотим поворачивать сустав. Мы делали это раньше, в предыдущей главе, и теперь я покажу вам, зачем мы это делаем. Сейчас у нас есть цепочка суставов, поэтому давайте установим Inverse kinematics на эту цепь.

Мы можем перейти в Skeleton, IK handle tool, или можно использовать вот этот значок, они оба работают одинаково. Теперь нам нужно выбрать первый сустав, из которого будем делать IK цепочку, пусть он будет верхним. И теперь последний сустав, он будет нижним. У нас есть промежуточные суставы, но это важно, что я именно выбираю сразу последний.

И у нас появился IKHandle1. Мы можем выбрать его, нажать W, и как видите, мой сустав посередине сгибается в этом направлении. Если бы я сделал мою цепь прямой, IKHandle бы не сработал, так как не понял бы, в каком направлении сгибать сустав, поэтому мы и сделали тут небольшой изгиб. Давайте заглянем в Аутлайнер. Видите, вот наши суставы.

А IKHandle - это отдельный объект и он не находится на цепочке суставов. Поэтому мы можем перемещать его отдельно и менять положение суставов. Вот основы того, как работать с IK Handles и инверсной кинематикой в Мауа.

Поэтому нужно запомнить, что у нас есть два способа управлять суставами, прямая кинематика и инверсная кинематика, и каждый имеет свои преимущества

Урок адаптирован под версию 3ds max 2009.

Инверсная кинематика является основой, на которой строится персонажная анимация. Она работает совсем не так, как работает прямая кинематика - потомки приводят в движение родительские объекты. Потомок, который вызывает трансформации других объектов по законам инверсной кинематики, называется либо эффектором (Effector), если он расположен в середине иерархической цепочки, либо конечным эффектором (EndEffector), если он является конечным объектом данной цепочки. Через эффектор осуществляется манипулирование всей иерархической цепочкой. При этом трансформация конечного эффектора обеспечивает трансформацию всех объектов иерархической цепи по законам инверсной кинематики, а трансформация просто эффектора приводит к тому, что положение объектов, стоящих по иерархии ниже его, меняется по законам прямой кинематики, а объектов с более высокой иерархией - по законам инверсной кинематики.

В качестве примера откройте файл Table_ lamp3-1. max . Иерархическая цепь объектов здесь уже создана. Чтобы ее увидеть, выполните команду Select by Name и в окне Select from Scene разверните структуру объекта. В данном случае конечным эффектором иерархической цепочки является самый нижний в иерархии объект Reflector.

Установите режим инверсной кинематики. Для этого на панели Hierarchy (Иерархия) откройте закладку IK (Инверсная кинематика) и щелкните кнопкой Interactive IK (Интерактивная инверсная кинематика). Выделите объект Support и переместите его в сторону. Вместе с ним точно так же переместятся и все остальные объекты. Теперь выделите, например, объект Lever02 и переместите его в любую сторону. Его перемещение вызовет изменение положения всех остальных объектов, включая объект Support, являющийся самым высшим в иерархии. При этом положение объектов, стоящих по иерархии ниже перемещаемого объекта (в данном случае это объекты Hinge03, Lever03, Reflector), будет меняться по законам прямой кинематики, а объектов с более высокой иерархией (Hinge02, Lever01, Hinge01, Support) - по законам инверсной кинематики.

Обратите внимание, что при перемещении рычага Lever02 положение и ориентация всех объектов меняются непредсказуемым образом. Это связано с тем, что по умолчанию для объектов, управляемых посредством эффектора, допустимы любые варианты перемещения и вращения, хотя на практике они могут трансформироваться только каким-либо определенным образом. При инверсной кинематике эти проблемы регулируются на закладке IK панели Hierarchy с помощью параметров, задаваемых в свитках Sliding Joints (Скользящие соединения) и Rotational Joints (Вращательные соединения).

Кроме того, можно определить в системе объект, который будет играть роль ограничителя. Terminator (Ограничитель) - это последний объект системы инверсной кинематики, начиная с верхнего уровня, который не подвергается влиянию при движении дочернего объекта. Для определения ограничителя достаточно выделить объект и в свитке Object Parameters (Параметры объекта) установить для него флажок Terminator .

Выделите объект Hinge01, перейдите на вкладку Hierarchy (Иерархия) | IK (Инверсная кинематика) и включите команду Interactive IK (Интерактивная инверсная кинематика). В свитке Object Parameters (Параметры объекта) установите флажок для Terminator . Передвиньте объект Lever02 в любую сторону. При этом объект Hinge01 и его родительский объект Support останутся неподвижными (рис. 1.1).

Рис. 1.1. Шарнир Hinge01 определен в качестве ограничителя

Продолжение урока вы можете найти в книге Горелика А.Г. « «.


Скелетная анимация - это тот самый случай, когда совсем общую теорию объяснить очень просто, а вот добиться реальных результатов, тем более, результатов серьёзных оказывается очень сложно.

Никто, однако, не считает зазорным изучать анимацию годами, натыкаясь на каждом углу на справедливость поговорки «Век живи - век учись».

Если в общем, то скелетная анимация - это анимирование 3D-фигуры посредством относительно небольшого количества управляющих элементов, и внешне и по принципу работы, напоминающие скелет - или строение марионетки.

Как он «изготавливается», мы рассматривали в статье «Риггинг» . От того, насколько разумно и правильно риггинг был выполнен, зависит и результаты первых попыток анимировать что-либо. Если иерархия костей сделана как надо, то и поведение цепочки, равно как и привязанных к ней вершин, будет «жизнеподобным». Ошибки же могут привести к совершенно нелепым последствиям: ноги могут «уехать» за голову, например.

При умелом использовании скелетная анимация позволяет значительнейшим образом экономить на усилиях - естественно, гораздо проще двигать несколько «костей», нежели тягать с места на место группы вершин и полигонов.

Существуют два основных типа планирования движения «скелета» - это прямая кинематика (Forward Kinematics - FK) и инверсная, или обратная кинематика (Inverse Kinematics - IK). Их также выбирают на этапе риггинга, - впрочем, этот процесс от скелетной анимации вообще неотделим.

Итак: создадим отдельно взятую цепочку «костей» - без добавления мяса пока что. Все операции осуществляются в пакете Blender3D, скриншоты, стало быть, тоже оттуда.



Видим четыре кости, где первая - «родительская», все последующие - находятся в последовательной иерархической зависимости от предыдущих.

В случае если мы используем прямую кинематику, то при попытке сдвинуть какие-либо звенья (кости) ниже уровнем, чем родительская, приведут к тому, что двигаться будут только нижестоящие:



Повернули кость 2 , вместе с ней повернулись (но остались на одной прямой) кости 3 и 4 .

Это прямая кинематика: перемещение старших по иерархии костей приводят к тому, что перемещаются и младшие.

При использовании обратной кинематики алгоритм получается ровно противоположный:




Задав режим автоматического выбора инверсной кинематики (Blender делает вид, что подбирает оптимальный вариант, и иногда вполне успешно), сдвигаем самую младшую в иерархии кость 4 ; вся цепочка послушно изогнулась.

Звено цепочки, изменение положения которого приводит к изменению положения других звеньев, называется effector (существует диковинный перевод «влиятель», но как на самом деле это слово переводить?..).



Подвигали кость 3 . Звенья 1-2 поменяли своё положение, а 4 - осталось на одной прямой со звеном 3 . Кость 3 теперь является effector"ом, и всё, что находится ниже его по иерархии подчиняется алгоритмам прямой кинематики.

Инверсная кинематика применяется главным образом там, где требуется точное расположение конечного звена в нужной точке (например, чтобы при ходьбе ноги персонажа не «проскальзывали» по поверхности или не утопали в полигонах, изображающих твердь земную).

Самое же важное - это грамотная расстановка ограничителей (constraints) для подвижных элементов на этапе риггинга. Конечности модели персонажа должны вести себя «в разумных антропоморфических пределах», например, чтобы колени не прогибались не в ту сторону или пальцы рук не заворачивались за запястье.

Далее начинается процесс автоматизации движений - тут всё делается так же, как и при обычной анимации. Задаются ключевые кадры для отдельных управляющих элементов, и они тащат за собой все остальные. При этом анимационные пакеты вполне могут регистрировать ключевые положения только для индивидуальных костей, для всех звеньев разом или для отдельных их групп. При этом генерируются кривые движения/вращения/масштаба для каждого элемента, участвующего в анимации. Современные пакеты, разумеется, предоставляют в избытке средства, позволяющие экономить на усилиях - например, «глобализовать» управление сразу множеством элементов, группируя их более-менее удобным способом. На скриншоте ниже представлено всё рабочее окно Blender с активированными Action Editor и Timeline Editor.

Тем не менее, сделать качественную анимацию - чудовищно кропотливый процесс, требующий учитывать огромное количество факторов влияния отдельных элементов друг на друга. Как уже сказано в статье про риггинг, при анимации антропо- или зооморфных персонажей следует иметь в виду анатомические особенности их прообразов в реальном мире и соответствующую взаимосвязь элементов.

Ну, и напоследок, добавим, что если целью стоит сделать не «реалистичную» анимацию, а стилизацию под анимацию рисованную, то необходимо иметь в виду пресловутые 12 принципов, заложенные

Здесь мы будем создавать анимацию для персонажа, которого мы изготовили в Главе 4. На сей раз обойтись отдельными сферами и чайниками не удастся, поскольку нам нужен не подопытный объект, а иерархически-связанная система объектов.

Прямая кинематика (FK)

Прямая кинематика (FK - Forward Kinematics) представляет собой движение дочерних объектов относительно родительских. Здесь нет ничего хитрого. Создадим прямую кинематику для рук нашего персонажа. Для этого откроем файл с персонажем. Нажмём кнопку Auto Key.

Пускай персонаж помашет нам рукой.

Сместим бегунок в какой-нибудь кадр, например в 10-й, поднимем руку вверх. Делать это мы будем при помощи вращения, причём, для придания нужного положения, скорей всего повернуть придётся обе части руки.

Вернёмся в начало диапазона () и проиграем анимацию. Если Вам показалось, что персонаж поднимает руку слишком быстро, сделайте следующее: выделите обе части руки (плечо и предплечие), затем перейдите в строку отображения номеров кадров, выделите вторые ключи (у нас в одном итом же месте находятся два ключа - для плеча и для предплечия) чтобы выделились оба, натяните вокруг них прямоугольную область. Выделенные ключи станут белыми. Передвиньте их в какой-нибудь другой кадр, например 15-й. Можете вернуться назад и проиграть анимацию ещё раз.

Поставьте бегунок в следующую позицию (через несколько кадров после 15-го) и поверните плечо немного влево. Ещё несколько раз поперемещайте бегунок и поповорачивайте плечо туда-сюда. Затем создайте заключительный кадр, в котором рука будет опущена и чуть согнута в локте. Если вы запустите анимацию, то увидите, что плечо двигается так, как и должно двигаться когда человек машет рукой, а предплечье медленно наклоняется. Это происходит потому, что для предплечия мы создали только два ключа с достаточно большим расстоянием между ними.

Чтобы избавиться от этого эффекта, надо в последнем взмахе рукой создать ключ, в котором предплечие находится в правильном положении. Создать этот ключ желательно в том же кадре, в котором стоит ключ для последнего взмаха плечом (предпоследний ключ для плеча). Выделите плечо, чтобы отображались его анимационные ключи, и переместите бегунок в кадр, где находится его предпоследний ключ. Теперь выделите предплечие и поверните его в нужное положение. Проиграйте анимацию снова. Теперь персонаж машет рукой более естественно. Выключим кнопку Auto Key. Эту кнопку вообще лучше не держать зря включённой, поскольку в этом случае можно создать нежелательную анимацию во время редактирования и размещения объектов. При выключенной кнопке Auto Key анимация по-прежнему проигрывается, но теперь её нельзя создавать. Трансформация объектов приводит к тому, что сдвигается сама анимация. Если мы сейчас в нулевом кадре повернём руку персонажа так, чтобы она была вытянута вперёд и проиграем анимацию, то увидем, что рука движется в другом положении. Нажмём Undo, чтобы восстановить первоначальную анимацию.

Подводим итоги: мы создали много анимационных ключей для плеча и всего четыре ключа для предплечия. Между вторым и третим ключами предплечие неподвижно относительно своего родительского объекта - плеча.

Здесь файл с анимацией руки (формат 3ds MAX 6).

Инверсная кинематика (IK)

Инверсная кинематика (Inverse Kinematics) применяется в тех случаях, когда нам надо попасть каким-либо объектом из нашей иерархии в заданное положение. К примеру, если мы захотим анимировать ходьбу персонажа, ноги должны вставать на землю и не проскальзывать во времы движения туловища относительно земли. Добиться этого используя прямую кинематику крайне трудно, практически невозможно. К счастью, существует инверсная кинематика.

Мы рассмотрим средства инверсной кинематики, которые были введены в 3ds МAX 4 и сохранились до последних версий (3ds MAX 7). В более ранних версиях инверсная кинематика была устроена несколько иначе.

Инверсная кинематика создаётся при помощи так называемых цепей инверсной кинематики (IK Chain). Цепь создаётся между последовательно привязанными друг к другу объектами. Для того, чтобы создать такую цепь, иерархическая последовательность должна оканчиваться неким вспомогательным дочерним объектом. Мы проследим создание цепи инверсной кинематики на ногах нашего персонажа, при этом последним вспомогательным объектом цепи будет ступня.

Выделим корневой объект нашей цепи. Имейте ввиду, что корневой объект цепи - это не корневой объект всей иерархии в целом, то есть не body, а бедро (thigh). Выделим бедро и войдём в пункт главного меню Animation . Откроем в Animation пункт IK Solver (решатель инверсной кинематики). Там можно видеть:

HI Solver (History Independent Solver) - исторически-независимый решатель

HD Solver (History Dependent Solver) - исторически-зависимый решатель (лучший решатель для коротких анимационных последовательностей, но даёт плохие результаты при длительной анимации)

IK Limb Solver - решатель для анимации конечностей, расчитан на два объекта иерархической цепи

Spline IK Solver - сплайновый решатель

Мы будем использовать HI Solver. IK Limb Solver хотя и разработан для анимации конечностей человека, работает он плохо, при его использовании у персонажа всегда одно колено выгибается назад, а один локоть - вперёд.

Если бедро у нас по-прежнему выделено, выберем HI Solver и кликнем мышью на ступню той же самой ноги, бедро которой выделено. У нас должна появиться петля, связывающая обе части ноги, и синий крест в опорной точке ступни. Цепь инверсной кинематики является вспомогательным объектом, который имеет цвет и имя. Можете для удобства переназвать созданную цепь. Создадим точно такую же цепь для второй ноги.

Синий крестик - так называемый целевой объект (IK Goal ). Если мы сейчас попробуем его подвигать, то увидем, что нога сгибается и поворачивается таким образом, чтобы опорная точка ступни всегда находилась в центре крестика (при том, что сама ступня не перемещается относительно голени). Настройки для наследования вращения, которые мы сделали для ступни, теперь не работают, поскольку они осуществлялись для прямой кинематики.

Теперь стало понятно, зачем нужен вспомогательный дочерний объект: его опорная точка является ориентиром для цепи обратной кинематики. Чтобы ступня двигалась естественно, надо к ней привязать ещё какой-нибудь вспомогательный объект, и сделать ещё одну цепь инверсной кинематики, но мы сейчас этим заниматься не будем, а попробуем создать анимацию ходьбы.

Если не нажата кнопка Auto Key, нажмём её. Переместим бегунок в какой-нибудь кадр, например 10. Начнём ходьбу с правой ноги. Поднимем её (при помощи IK Goal) и немного занесём. Туловище тоже немного подвинем вперёд, так, как оно подвинется на полушаге. Переместим бегунок снова. Поставим ступню на землю, а туловище ещё немного пододвинем. Заметим, что мы создавали анимационные ключи не для вращения бедра и голени, а для перемещения IK Goal.

Теперь надо создать анимационный ключ для IK Goal в том же кадре, в котором правая ступня вновь коснулась земли. Вообще, ключ создастся по малейшему перемещению нашего IK Goal для левой ноги, но чтобы создать ключ не перемещая ногу, надо нажать на большую кнопку с изображением ключа (Set Key - поставить ключ). Либо, можно войти во вкладку Motion и создать анимационный ключ при помощи кнопки Position в группе Create Key.

Теперь проделаем анимацию левой ноги точно так же, как мы это делали для правой, не забывая при этом перемещать туловище. Отмотаем анимацию назад и проиграем. Если мы всё сделали правильно, персонаж делает два шага, при чём пока одна нога шагает, вторая не проскальзывает. На странное движение ступней пока не будем обращать внимание, в данном случае они у нас играют роль впомогательных объектов.

Здесь готовая сцена , где персонаж делает два шага и машет рукой.

Итак, мы познакомились с прямой и обратной кинематикой, теперь можно переходить к более серьёзным вещам: знакомству с системами костей и созданию скелета для анимации более сложного и детализированного персонажа.


Перевод осуществил Pavel A. Chuvanov, участник проекта Almighty.

Кинематика - есть процесс вычисление позиции в пространстве для конца взаимосвязанной структуры при заданных углах поворота всех шарнирных точек (Joints). Это легко осуществляется, если есть только одно решение. Инверсная кинематика делает обратное. Для данной конечной точки вычисляются необходимые углы поворота шарниров таким образом, чтобы удалось достичь этой конечной точки. При этом могут возникнуть трудности, если есть много или бесконечно много решений.

Данный процесс чрезвычайно полезен в робототехнике. Например, вы захотели, чтобы рука робота потянулась и взяла объект. Если программа знает местоположение объекта относительно плечевого сустава, то ей достаточно расчитать углы поворота шарниров чтобы достичь объекта. Также инверсная кинематика полезна в 3D играх. Возьмем для примера дракона с очень длинной шеей. Дракон должен реалистично изогнуть шею и слопать игрока стоящего на полу. Или игрок захотел поднять с пола некий объект или нажать на кнопку. Пользователь увидит на экране как игрок потянется и коснется объекта, вместо того чтобы просто махнуть рукой где-то вблизи объекта (как например в Alone In The Dark).