Шифрование жесткого диска в Linux. Сравнение производительности различных систем шифрования под linux Шифрование разделов linux

Имейте в виду, автор данного труда рассказывает о методах шифрования разделов диска, которые использует сам, при .

Linux

В данном руководстве используется Linux dm-crypt (device-mapper ) на ядре 2.6 . Шифровать будем раздел /dev/sdc1 , это может быть любой раздел, диск, USB или файл, созданный losetup . Здесь мы будем использовать /dev/loop0 , смотрите . Device mapper использует метку для идентификации раздела, в данном примере sdc1 , но это может быть любая другая строка.

Шифрование разделов диска с помощью LUKS

LUKS с dm-crypt очень удобен для шифрования разделов диска, он позволяет иметь несколько паролей для одного раздела а так-же с легкостью менять их. Что-бы проверить доступно-ли у вас использование LUKS , наберите: cryptsetup --help , если насчет LUKS ничего не появилось, читайте ниже "dm-crypt без LUKS ". Для начала создайте раздел, если необходимо fdisk /dev/sdc .

Как создать зашифрованный раздел

# dd if=/dev/urandom of=/dev/sdc1 # Опционально. Только для параноиков # cryptsetup -y luksFormat /dev/sdc1 # Это уничтожит все данные на sdc1 # cryptsetup luksOpen /dev/sdc1 sdc1 # mkfs.ext3 /dev/mapper/sdc1 # Будет создана файловая система ext3 # mount -t ext3 /dev/mapper/sdc1 /mnt # umount /mnt # cryptsetup luksClose sdc1
Монтировать
# cryptsetup luksOpen /dev/sdc1 sdc1 # mount -t ext3 /dev/mapper/sdc1 /mnt
Размонтировать
# umount /mnt # cryptsetup luksClose sdc1

dm-crypt без LUKS

# cryptsetup -y create sdc1 /dev/sdc1 # Или любой другой раздел, типа /dev/loop0 # dmsetup ls # Проверить, покажет: sdc1 (254, 0) # mkfs.ext3 /dev/mapper/sdc1 # Только если делается впервые! # mount -t ext3 /dev/mapper/sdc1 /mnt # umount /mnt/ # cryptsetup remove sdc1 # Отсоединить зашифрованный раздел Делайте тоже самое, (без создания fs), что-бы переподключить раздел. При вводе некорректного пароля команда mount не будет выполнена. В таком случае просто удалите отображение sdc1 (cryptsetup remove sdc1 ) и создайте по новой.

FreeBSD

Пара популярных модулей для шифрования дисков в , это gbde и geli . Geli более быстрый т.к использует аппаратное ускорение. Смотрите FreeBSD handbook Chapter 18.6 для более подробного описания. Для работы, geli должен быть загружен как модуль ядра, или встроен в него на стадии компиляции. options GEOM_ELI device crypto # Или загрузить в качестве модуля ядра: # echo "geom_eli_load="YES"" >> /boot/loader.conf # Или kldload geom_eli

Использование пароля и ключа

Автор пользуется данными настройками для типичного шифрования разделов, он использует пароль и ключ для шифрования "Master key - основного ключа". Что-бы смонтировать зашифрованный раздел, понадобится и пароль и ключ /root/ad1.key . "Master key " хранится вутри раздела и невидим. Следующий пример типичен для USB или файлового образа.

Создаем шифрованный раздел

# dd if=/dev/random of=/root/ad1.key bs=64 count=1 # Этот ключ шифрует Master key # geli init -s 4096 -K /root/ad1.key /dev/ad1 # -s 8192 и OK для дисков # geli attach -k /root/ad1.key /dev/ad1 # DO создает резервную копию /root/ad1.key # dd if=/dev/random of=/dev/ad1.eli bs=1m # Опционально и занимает много времени # newfs /dev/ad1.eli # Создать файловую систему # mount /dev/ad1.eli /mnt # Монтирование шифрованного раздела
Attach
# geli attach -k /root/ad1.key /dev/ad1 # fsck -ny -t ffs /dev/ad1.eli # Если есть сомнения, проверьте файловую систему # mount /dev/ad1.eli /mnt
Detach
Процедура размонтирования производится автоматически при выключении. # umount /mnt # geli detach /dev/ad1.eli
/etc/fstab
Монтирование шифрованного раздела можно сконфигурировать через /etc/fstab . Пароль будет запрошен при загрузке. # grep geli /etc/rc.conf geli_devices="ad1" geli_ad1_flags="-k /root/ad1.key" # grep geli /etc/fstab /dev/ad1.eli /home/private ufs rw 0 0

Только по паролю

Это более подходящий способ для шифрования флэшки или образа на основе файла, запрашивается только пароль. В данном случае не нужно волноваться о файлах ключей. Процедура напоминает вышеописанную, за исключением создания файлов ключей. Зашифруем образ размером 1 Гб, созданный из файла /cryptedfile . # dd if=/dev/zero of=/cryptedfile bs=1M count=1000 # Создаем 1Гб файл # mdconfig -at vnode -f /cryptedfile # geli init /dev/md0 # Зашифровать только по паролю # geli attach /dev/md0 # newfs -U -m 0 /dev/md0.eli # mount /dev/md0.eli /mnt # umount /dev/md0.eli # geli detach md0.eli Теперь этот образ можно примонтировать на другую машину, просто введя пароль. # mdconfig -at vnode -f /cryptedfile # geli attach /dev/md0 # mount /dev/md0.eli /mnt

Не секрет, что на сегодняшний день шифрование данных – единственный, пожалуй, способ, как-то их сохранить. Сегодня мы узнаем, как создать шифрованный раздел в Linux при помощи стандарта luks (Linux Unified Key Setup). Буду приводить для примера скриншоты из операционки CentOS Linux.

Итак, прежде всего заготовим раздел, который будем шифровать. В рамках своей виртуальной машины я создал новый диск, подключил его к интерфейсу SATA, в системе появилось устройство /dev/sdb

Создадим на нем основной раздел:

# fdisk /dev/sdb

Создали 1 раздел (sdb1), отвели ему всё свободное место.

Отлично, теперь отформатируем раздел /dev/sdb1 с использованием средств криптозащиты по парольной фразе. Нам будет предложено ввести пароль. Повторим его дважды, чтобы не ошибиться.

# cryptsetup --verbose --verify-passphrase luksFormat /dev/sdb1

По умолчанию используется алгоритм AES 256bit. При необходимости можно выбрать другой алгоритм, указав ключи -c алгоритм -s длина ключа

# cryptsetup -c aes -s 1024 --verbose --verify-passphrase luksFormat /dev/sdb1

Затем активируем криптоконтейнер под именем safe:

# cryptsetup luksOpen /dev/sdb1 safe


В результате чего у нас создается новое блочное устройство в каталоге /dev/mapper/ с именем safe.

Создаем файловую систему:

# mkfs.ext3 /dev/mapper/safe


Что делать, если мы хотим, чтобы наш раздел активировался каждый раз при старте системы (разумеется, спрашивая парольную фразу)?

Отредактируем файл /etc/crypttab, который похож на /etc/fstab

# vim /etc/crypttab

Допишем туда строку:

safe /dev/sdb1 none

А в файл /etc/fstab следующее:

/dev/mapper/safe /safe ext3 defaults 0 0

Так, ситуация. Мы создали криптованый раздел. Знаем ключ. Можно ли сделать так, чтобы раздел был доступен не только по нашему ключу, но и по другому. То есть хотим дать доступ “Васе”, чтобы он мог работать наравне с нами. Легко.

Добавим ещё один ключ в криптоконтейнер.

Всего можно создать до 8-ми ключей, каждый из которых помещается в свой слот.


Показать занятые слоты можно так:

# cryptsetup luksDump /dev/sdb1


Как видим, заняты слоты 0 и 1. Вместо паролей можно использовать и ключевые файлы.

Показать статус криптоконтейнера можно так:

# cryptsetup status safe

Практический пример.

Цель: Защитить USB устройство от назойливых глаз.

Подключим флешку к нашей системе:


Флешка определилась как девайс sdc. Это значит, что появилось устройство /dev/sdc. Если на флешке были разделы fat или ntfs, то лучше информацию куда-нибудь скинуть, потому как после шифрования устройства всё пропадёт.

Итак, можем разметить флешку с помощью fdisk, можем оставить как есть.

# cryptsetup luksFormat /dev/sdc

Вводим парольную фразу.


Теперь подключим наше шифрованное устройство, чтобы разметить его под новую файловую систему:

# cryptsetup luksOpen /dev/sdc flash

Теперь у нас спросят парольную фразу, после ввода которой в системе появится новое устройство /dev/mapper/<имя>, в нашем случае flash.

Создадим файловую систему на этом устройстве:

# mkfs.ext3 /dev/mapper/flash

Готово. Ну чтож, пора создать ключи, по которым будет осуществляться доступ к устройству. Ключей можно заготовить несколько (всего до 8-ми слотов, хотя 0-ой слот уже занят под парольную фразу, но его можно удалить).

# dd if=/dev/urandom of=~/keyfile.key bs=1 count=256

Таким образом создадим файл в 256 байт, забитый случайными числами. Проверить это можно так:

# xxd ~/keyfile.key


Действительно. полный рэндом. Теперь осталось добавить этот ключ в нашу флешку.

Отключим пока криптоконтейнер.

# cryptsetup luksClose flash

Добавляем ключ:

# cryptsetup luksAddKey /dev/sdc ~/keyfile.key


Нам предложат ввести парольную фразу, чтобы удостовериться, что у нас есть доступ к этому хранилищу.

# cryptsetup luksDump /dev/sdc

Отлично! Теперь сохраним ключ в надежное местечко.. Он нам понадобится для доступа к контейнеру.

Пример 1.

Пользователь “A” хочет закинуть на флешку файл, зная парольную фразу:


Разлочили по паролю, создав девайс mydisk, далее примонтировали mydisk в домашний каталог. Создали текстовый файл hello.txt с содержимым. Отключили контейнер.

Пример 2.


Разлочили по ключевому файлу, создали устройство flashka. Смонтировали его в домашний каталог пользователя sergey, прочитали файл – всё ок!

Сегодня хранить важные данные в открытом виде стало как никогда опасно. И даже не столько из-за государственной слежки (захотят - найдут, к чему придраться, и так), сколько из-за желающих эти данные похитить. В принципе, для защиты информации имеется множество методов, но в статье будет описаны именно криптографические средства.


В отличие от некоторых других операционных систем, в Linux имеется множество средств для криптографической защиты информации - от шифрования почтовых переписок до шифрования файлов и блочных устройств. Нас интересует именно шифрование на уровне файловых систем, файлов и блочных устройств. Для начала стоит разобраться, в чем разница. Шифрование на уровне файловых систем предполагает наличие прослойки между основной файловой системой (если, конечно, файловая система сама по себе не поддерживает шифрование) и пользователем.

Преимущество у данного типа шифрования - то, что ключи для всех пользователей разные. Недостаток же - если включить шифрование имен файлов, длина допустимого имени уменьшится, кроме того, пользователь может сохранить файл в иное место на диске, что автоматически нивелирует пользу. И еще одно но - даже если включено шифрование имен, временные метки останутся прежними. Шифрование блочных устройств происходит на более низком уровне, под файловой системой. При этом сама файловая система, разумеется, не знает, что она находится на шифрованном томе.

Преимущества у данного способа противоположны недостаткам предыдущего. Недостаток же в том, что придется каждый раз при загрузке/монтировании вводить пароль. Второй же недостаток в том, что если в рантайме злоумышленник получит доступ к файлам на криптокон-
тейнере, все - пиши пропало. Это именно что защита от офлайновых атак. Кроме того, в абсолютном большинстве случаев сохранения криптоконтейнера в облако придется заливать его целиком заново.

В статье будет описана настройка следующих методов криптозащиты:
dm-crypt/LUKS - создание криптоконтейнера с помощью device-mapper и CryptoAPI ядра;
eCryptfs - шифрование на уровне файловых систем;
EncFS - аналогично описанному выше, но не требует загрузки модулей ядра.

DM-CRYPT/LUKS
Существует два вида настройки dm-crypt - plain и LUKS. Отличие в том, что в случае использования LUKS в начале криптотома присутствуют метаданные, позволяющие использовать несколько ключей и изменять их. В то же время наличие подобного заголовка в некоторых случаях само по себе компрометирующе - впрочем, в большинстве подобных случаев будет компрометирующей и область с высокой степенью энтропии. Настройка plain dm-crypt с файлом ключа и парольной фразой Посмотрим, как настроить комбинацию из тома plain dm-crypt, зашифрованного с помощью ключевого файла, в свою очередь содержащегося в LUKS-контейнере. Для начала стоит определиться, как именно будут размещаться разделы. Существует три основных варианта:
просто крипто-том;
сперва крипто-том, затем поверх него LVM;
сперва крипто-том, затем RAID, затем LVM.

И всяческие комбинации. Давай попробуем второй вариант. Первым делом создадим контейнер LUKS для хранения ключевого файла, чтобы использовать этот файл вместе с ключевой фразой. В этом случае вероятность криптоанализа тома, зашифрованного с помощью plain dm-crypt, снижается:

# dd if=/dev/zero of=/root/key.luks bs=512 count=2057

# cryptsetup --align-payload=1 luksFormat /root/key.luks

# cryptsetup luksOpen /root/key.luks cryptokey

# dd if=/dev/urandom of=/dev/mapper/cryptokey

Первая команда подготавливает файл контейнера, вторая этот контейнер создает, третья подключает, четвертая генерирует ключевую информацию. Стоит заметить, что опция –align-payload=1 нужна для того, чтобы размер метаданных LUKS составлял не 4096 512-байтовых блоков, а всего лишь 2056. Таким образом, на собственно ключевую информацию остается 512 байт.
Затем переходим к созданию криптотома. На этом этапе по желанию можно также заполнить диск псевдослучайными данными, чтобы затруднить криптоанализ, если он будет. Затем уже можно создавать криптотом. Команда для этого выглядит следующим образом (естественно, в иных случаях идентификаторы могут отличаться, так что нужно быть внимательным):

# cryptsetup --cipher=serpent-xts-plain64 --offset=0--key-file=/dev/mapper/cryptokey --key-size=512 open --type=plain/dev/disk/by-id/ata-VBOX_HARDDISK_VB05eadebe-f25e8d59 crypto0


При необходимости надо повторить аналогичную команду и на других устройствах, для которых требуется шифрование. Затем создадим на криптотомах LVM и ФС на нем:

Создадим файл /etc/initramfs-tools/hooks/cryptokeys примерно следующего содержания (служебная часть скрипта опущена):

И файл /etc/initramfs-tools/scripts/local-top/cryptokeys (служебная часть опять
же опущена):

# <...>

modprobe - b dm_crypt

while ! (/ sbin / cryptsetup luksOpen / etc / crypto / key . luks cryptokey

/ dev / disk / by - id / ata - VBOX_HARDDISK_VB05eadebe - f25e8d59 crypto0

&& / sbin / cryptsetup plainOpen -- key - file = / dev / mapper / cryptokey

/ dev / disk / by - id / ata - VBOX_HARDDISK_VBc2414841 - cfeccde5 crypto1

&& / sbin / cryptsetup luksClose cryptokey

) ; do

echo “Try again . . . ”

done

Эти два файла должны быть исполняемыми. Затем создаем initrd:

# update-initramfs -u -k all -v

При следующей перезагрузке будет запрошен пароль для LUKS-контейнера. В случае использования plain dm-crypt есть еще одна возможность - общий нижний слой, что позволяет сделать нечто наподобие скрытых томов TrueCrypt. Проще привести пример:

# cryptsetup --cipher=serpent-xts-plain64 --offset=0--size=2097152 --shared open --type=plain/dev/disk/by-id/ata-VBOX_HARDDISK_VBcda8398f-f1f1deec crypto

# cryptsetup --cipher=serpent-xts-plain64 --offset=2097152--size=2097152 --shared open --type=plain/dev/disk/by-id/ata-VBOX_HARDDISK_VBcda8398f-f1f1deec crypto_shared

Размер и смещение указываются в 512-байтовых блоках.


Расширенные возможности LUKS
Давай посмотрим также и на расширенные возможности использования LUKS-контейнеров. К ним можно отнести смену ключей. Это необходимо при компрометации или создании политики смены ключей. Первым шагом для этого будет создание резервной копии заголовка контейнера. Если все
нормально, после смены ключа ее можно уничтожить. Делаем мы ее, понятно, на нешифрованный раздел:

Наконец, добавляем новый ключ в систему:

Рассмотрим и процедуру восстановления томов LUKS. Самый простой вариант, разумеется, когда есть копия заголовка. В этом случае для восстановления требуется всего одна команда:

Самая длинная непрерывная строчка и будет мастер-ключом. Ее нужно скопировать в файл на нешифрованный том и после этого преобразовать в бинарную форму (перед этим следует убедиться, что в данном файле нет никаких
символов конца строки):

ENCFS
Посмотрим, как настроить EncFS для автоматического монтирования при входе в систему. Для начала поставим нужные пакеты:

При настройке в режиме эксперта будет задан ряд вопросов: тип шифра (доступны только AES и Blowfish), размер ключа, размер блока, как шифровать имена файлов - блочное шифрование (которое полностью скрывает имя файла, в том числе длину), потоковое (которое шифрует с максимально близкой длиной, что иногда удобно, если имена чересчур длинные и при использовании блочного шифра есть достаточно большая вероятность превысить максимально допустимую длину) или вовсе будет отсутствовать… В конце будет запрошен пароль, он должен совпадать с используемым для входа, в противном случае автомонтирование работать не будет.

Следом нужно отредактировать файл /etc/security/pam_encfs.conf:

И файл /etc/fuse.conf:

И добавим пользователя в группу fuse:

$ sudo usermod - a - G fuse $ USER

После выхода-входа каталог private можно будет использовать как хранилище для личных данных. Стоит, однако, отметить, что аудит выявил некоторые (достаточно серьезные) проблемы с безопасностью, из-за чего данную систему крайне не рекомендуется использовать для хранения действительно важных данных.

ECRYPTFS
Известно, что eCryptFS применяется в Ubuntu как средство по умолчанию для защиты домашних каталогов. Посмотрим, как оно работает, - создадим шифрованный каталог вручную. Установим пакеты:

СозданиеeCryptFS

И смонтируем ФС (при первом монтировании создаются все необходимые метаданные):

$ sudo mount - t ecryptfs / home / rom / . secret / home / rom / secret

Будет запрошена парольная фраза (всего один раз, повторный ввод не реализован, что выглядит не очень хорошим решением, учитывая, что она должна быть длинной), затем будет запрошен тип шифра (AES, Blowfish, 3DES, Twofish, CAST6 и CAST5), размер ключа, задан вопрос, разрешить или запретить нешифрованные файлы в каталоге с зашифрованными, шифровать ли имена файлов… и в финале спросит, действительно ли желаем подмонтировать и сохранить ли сигнатуру в определенный файл. Вопрос не настолько глупый, как может показаться сначала: в данном ПО при отсутствии сигнатуры не существует возможности отличить правильный пароль от неправильного.

Шифрование домашнего каталога пользователя

Во время первого запуска может понадобиться завершить несколько процессов. После шифрования необходимо немедленно зайти под пользователем, при этом будет предложено записать или распечатать парольную фразу, сгенерированную для шифрования и защищенную, в свою очередь, пользовательским паролем. Это необходимо для восстановления в случае нештатной ситуации.


Предупреждение о необходимости запомнить парольную фразу

Посмотрим, как его восстанавливать. Предположим, что парольная фраза не записана и восстановление идет с Live CD. Подразумевается, что ФС подмонтирована. Переходим в каталог home/.ecryptfs/rom/.ecryptfs и набираем команду:

dm-verify
Модуль dm-verify предназначен для проверки целостности блочных устройств. Верификация ведется с помощью hash tree, где «листья» - хеш-суммы блоков, а «ветви» - хеш-суммы наборов «листьев». Таким образом, для верификации блочного устройства (будь то раздел или диск) достаточно проверить всего одну контрольную сумму.
Этот механизм (вкупе с цифровой подписью) применяется в некоторых Android-устройствах для защиты от модификации системных разделов, а также в Google Chromium OS.

ЗАКЛЮЧЕНИЕ
Linux содержит действительно немало средств для криптографической защиты информации. Из трех описанных средств как минимум одно присутствует во всех современных дистрибутивах Linux. Но что же выбрать?
dm-crypt/LUKS стоит применять в тех случаях, когда есть возможность быстро отключить зашифрованный том и когда резервные копии либо не нужны, либо засекречиваются иным путем. В этом случае данное решение более чем эффективно, особенно с учетом того, что шифровать можно каскадом произвольной вложенности и типа (например, AES-Twofish-AES), - настоящий рай
для параноиков.
eCryptFS подходит в тех случаях, когда нужно шифрованные данные куда-то сохранять - к примеру, в облако. Она обеспечивает довольно надежноешифрование (хотя в 128-битном варианте, используемом по умолчанию, есть возможность снижения криптостойкости на два бита) и для конечного пользователя прозрачна.
EncFS же - старичок примерно десятилетней давности, базирующийся на еще более древних работах. К настоящему времени не рекомендован к использованию из-за потенциальных дыр в безопасности, но может применяться в качестве кросс-платформенного средства для защиты несенситивных данных в облаках.

При необходимости использования подобных средств всегда нужно помнить, что защита должна быть комплексной.

Шифрование домашнего каталога обеспечивает надежную защиту данных, хранящихся на жёстком диске или ином носителе. Шифрование особенно актуально на переносных ПК, на компьютерах с множественным доступом, а также в любых других условиях. Шифрование домашнего каталога предлагается при установке Linux Mint.

Основная загвоздка при полном шифровании домашнего каталога состоит в том, что необходимо «вынести» каталог с зашифрованными данными за пределы точки монтирования.

Производительность снижается незначительно, по крайней мере пока не пользуется SWAP. SWAP – это специальный раздел на диске или файл в который операционная система перемещает отдельные блоки оперативной памяти в случае когда оперативной памяти не хватает для работы приложений. SWAP тоже шифруется, если в инсталляторе выбрать шифрование домашнего каталога, и при этом перестает работать спящий режим.

Не шифровать SWAP при шифрованном домашнем каталоге – потенциально опасно, так как там могут оказаться данные из шифрованных файлов в открытом виде – весь смысл шифрования теряется. Начиная с 14-ой версти Linux Mint, при установке есть возможность выбрать вариант шифрования всего диска. Этот вариант наиболее подходит для сохранения персональных данных на переносных устройствах (у которых, как правило, только один пользователь).

1.3 Шифрование в gnome – Seahorse

В Linux Mint есть встроенная утилита «Пароли и ключи» или же Seahorse. Используя её возможности пользователь может оперировать всеми ключами, паролями, а также сертификатами которые имеются в данной ОС.

По сути Seahorse – это приложение для GNOME (GNOME – свободная среда рабочего стола для Unix-подобных операционных систем), являющееся фронтэндом к GnuPG (свободная программа для шифрования информации и создания электронных цифровых подписей) и предназначенное для управления ключами шифрования и паролями. Пришел на замену GNOME Keyring, которого полностью заменил в GNOME 2.22, хотя был анонсирован еще в GNOME 2.18. Позволяет производить все операции которые ранее необходимо делать в командной строке и объединяя их под едиными интерфесом:

    управлять безопасностью своей рабочей среды и ключами OpenPGP и SSH;

    шифровать, расшировывать и проверять файлы и текст;

    добавлять и проверять цифровые подписи к документам;

    синхронизировать ключи с ключевыми серверами;

    создавать и публиковать ключи;

    резервировать ключевую информацию;

    добавлять к изображениями в любом поддерживаемом GDK как OpenGPG photo ID;

1.4 TrueCrypt

TrueCrypt обладает достаточно удобным графическим интерфейсом, но, к сожалению, разработчики жестко зашили в код интеграцию с файловым менеджером Nautilus.

Для шифрования данных можно использовать разные методы.

Для начала нужно создать так называемый контейнер, в котором будут содержаться файлопапки, предназначенные для шифрования. Контейнером может служить файл с произвольным названием или даже целый раздел диска. Для доступа к контейнеру необходимо указать пароль, а также можно сделать файл ключа (необязательная опция), с помощью которого будет шифроваться информация. Размер контейнера ограниченный.

Создание зашифрованных разделов/файлов

Создание файл ключа:

truecrypt -create-keyfile /home/user/test/file , где file – название файла-ключа.

Создание контейнера, в данном случае раздела:

sudo truecrypt -k /home/user/test/file -c /dev/sda9

Вместо раздела /dev/sda9 вполне можно указать и файл, например /home/user/test/cryptofile, но в этом случае необходимо будет указать его размер, это делается параметром -size=5G до параметра -c. В указанном примере создастся файл cryptofile размером 5 Гбайт. Иногда TrueCrypt принимает размер только в байтах, для 5 Гбайт можно или высчитать значение заранее и указать -size=5368709120, или же записать следующим образом: -size=`echo 1024^3*5 | bc`.

Для шифрования будет использоваться сделанный уже файл-ключ.

При создании будет предложен выбор типа контейнера (нормальный / скрытый), файловой системы (FAT, ext2/3/4 или без ФС), в данном примере был выбран режим без использования ФС. Также будет предложен выбор алгоритма шифрования (например, AES), а так же hash-алгоритм (например, SHA-1) для шифрования потоков данных.

TrueCrypt используется для шифрования данных налету, то есть можно, подмонтировав контейнер, работать с находящимися в нём файлами как обычно (открывать/редактировать/закрывать/создавать/удалять), что очень удобно.

Шифрованный раздел/файл был создан. Теперь, если необходимо его внутреннюю файловую систему (далее ФС) отформатировать под нужную, следует сделать следующее.

Выбрать необходимый раздел используя Truecrypt:

truecrypt -k /home/user/test/file /dev/sda9

По умолчанию будет задействован созданный Truecrypt девайс /dev/mapper/truecrypt0. По обращению к этому девайсу, можно менять, например ФС в шифрованном контейнере. В данном случае это нужно сделать.

sudo mkfs.ext4 -v /dev/mapper/truecrypt0

Этим самым была сделана ФС ext4 внутри данного шифрованного контейнера.

Далее, так как данный контейнер уже «прикреплён» к девайсу /dev/mapper/truecrypt0, то осталось его просто примонтировать к какой-нибудь директории. Эта директория для монтирования должна уже существовать в системе.

sudo mount /dev/mapper/truecrypt0 /mnt/crypto , где /mnt/crypto – директория, к которой примонтирован шифрованный контейнер.

truecrypt -d

Теперь без знания файла-ключа и пароля никто не сможет прочесть спрятанную информацию.

Безопасность и конфиденциальность очень важны, для тех, кто хранит важные данные на компьютере. Ваш домашний компьютер находится в безопасности, но с ноутбуком или другими переносными устройствами ситуация очень сильно меняется. Если вы носите свой ноутбук с собой почти везде и к нему могут иметь доступ посторонние лица, возникает вопрос - как защитить свои данные от чужого вмешательства. Именно от физических атак, где каждый желающий может попытаться получить данные из USB накопителя или жесткого диска ноутбука просто забрав устройство или в случае ноутбука, вытянув жесткий диск и подключив его к другой операционной системе.

Многие предприятия и даже простые пользователи используют шифрование дисков в linux чтобы защитить конфиденциальную информацию, такую как: сведения о клиенте, файлы, контактную информацию и многое другое. В операционной системе Linux поддерживается несколько криптографических методов для защиты разделов, отдельных каталогов или полностью всего жесткого диска. Все данные, в любом из этих способов автоматически зашифровываются и расшифровываются на лету.

Шифрование на уровне файловой системы:

  • 1. eCryptfs - это криптографическая файловая система Linux. Она хранит криптографические метаданные для каждого файла в отдельном файле, таким образом, что файлы можно копировать между компьютерами. Файл будет успешно расшифрован, если у вас есть ключ. Это решение широко используется для реализации зашифрованной домашней директории, например, в Ubuntu. Также ChromeOS прозрачно встраивает эти алгоритмы при использовании сетевых устройств для хранения данных (NAS).
  • 2. EncFS - обеспечивает шифрованную файловую систему в пространстве пользователя. Она работает без каких-либо дополнительных привилегий и использует библиотеку fuse и модуль ядра для обеспечения интерфейса файловой системы. EncFS - это свободное программное обеспечение и она распространяется под лицензией GPL.

Блочное шифрование на уровне устройства:

  • Loop-AES - быстрая и прозрачная файловая система, а также пакет для шифрования раздела подкачки в Linux. Исходный код программы давно не изменялся. Она работает с ядрами 4.x, 3.x, 2.2, 2.0.
  • TrueCrypt - это бесплатное решение с открытым исходным кодом для шифрования диска в операционных системах Windows 7 / Vista /XP / Mac OS X, а также в Linux.
  • dm-crypt+LUKS - dm-crypt - это прозрачная подсистема для шифрования диска в ядре 2.6 и более поздних версиях. Поддерживается шифрование целых дисков, съемных носителей, разделов, томов RAID, программного обеспечения, логических томов и файлов.

В этой инструкции мы рассмотрим шифрование жесткого диска на Linux с помощью алгоритма Linux Unified Key Setup-on-disk-format (LUKS).

Как работает LUKS?

LUKS (Linux Unified Key Setup - протокол шифрования блочного устройства. Но мы забежали далеко наперед, чтобы понять как это работает, нужно скачала разобраться с другими технологиями, используемыми в этом способе.

Чтобы выполнить шифрование диска linux используется модуль ядра dm-crypt. Этот модуль позволяет создавать в каталоге /dev/mapper виртуальное блочное устройство с прозрачным для файловой системы и пользователя шифрованием. Фактически все данные лежат на зашифрованном физическом разделе. Если пользователь пытается записать данные на виртуальное устройство, они на лету шифруются и записываются на диск, при чтении с виртуального устройства, выполняется обратная операция - данные расшифровываются с физического диска и передаются в открытом виде через виртуальный диск пользователю. Обычно для шифрования используется метод AES, потому что под него оптимизированы большинство современных процессоров. Важно заметить, что вы можете шифровать не только разделы и диски, но и обычные файлы, создав в них файловую систему и подключив как loop устройство.

Алгоритм LUKS определяют какие действия и в каком порядке будут выполняться во время работы с шифрованными носителями. Для работы с LUKS и модулем dm-crypt используется утилита Cryptsetup. Ее мы и рассмотрим далее.

Утилита Cryptsetup

Утилита Cryptsetup позволят облегчить шифрование раздела Linux с помощью модуля dm-crypt. Давайте сначала ее установим.

В Debian или Ubuntu, для этого используйте такую команду:

apt-get install cryptsetup

В дистрибутивах, основанных на Red Hat это будет выглядеть так:

yum install cryptsetup-luks

Синтаксис запуска команды такой:

$ cryptsetup опции операция параметры_операции

Рассмотрим основные операции, которые можно сделать с помощью этой утилиты:

  • luksFormat - создать зашифрованный раздел luks linux
  • luksOpen - подключить виртуальное устройство (нужен ключ)
  • luksClose - закрыть виртуальное устройство luks linux
  • luksAddKey - добавить ключ шифрования
  • luksRemoveKey - удалить ключ шифрования
  • luksUUID - показать UUID раздела
  • luksDump - создать резервную копию заголовков LUKS

Параметры операции зависят от самой операции, обычно это либо физическое устройство, с которым нужно произвести действие, либо виртуальное или и то и другое. Еще не все понятно, но на практике, я думаю, вы со всем разберетесь.

Шифрование диска Linux

Теория пройдена, все инструменты готовы. Теперь рассмотрим шифрование раздела linux. Перейдем к настройке жесткого диска. Обратите внимание, что это удалит все данные из диска или раздела, который вы собираетесь зашифровать. Так что если там есть важные данные, лучше скопируйте их в более надежное место.

Создание раздела

В этом примере мы будем шифровать раздел /dev/sda6, но вместо него вы можете использовать целый жесткий диск или просто один файл, заполненный нулями. Создаем шифрованный раздел:

cryptsetup -y -v luksFormat /dev/sda6

WARNING!
========
This will overwrite data on /dev/sda6 irrevocably.

Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase:
Verify passphrase:
Command successful.

Эта команда выполнит инициализацию раздела, установит ключ инициализации и пароль. Указывайте такой пароль, чтобы его потом не забыть.

Выполните такую команду чтобы открыть только что созданный раздел с помощью модуля dm-crypt в /dev/mapper, для этого понадобится ввести пароль, с которым выполнялось шифрование luks linux:

Enter passphrase for /dev/sda6

Теперь вы можете увидеть новое виртуальное устройство /dev/mapper/backup2 созданное с помощью команды luksFormat:

ls -l /dev/mapper/backup2

Чтобы посмотреть состояние устройства выполните:

cryptsetup -v status backup2

/dev/mapper/backup2 is active.
type: LUKS1
cipher: aes-cbc-essiv:sha256
keysize: 256 bits
device: /dev/sda6
offset: 4096 sectors
size: 419426304 sectors
mode: read/write
Command successful.

А с помощью следующей команды вы можете сделать резервную копию заголовков LUKS на всякий случай:

cryptsetup luksDump /dev/sda6

Ну, можно сказать, раздел готов. И что самое интересное, теперь вы можете им пользоваться так же, как и любым другим обычным разделом в каталоге /dev. Его можно форматировать с помощью стандартных утилит, записывать на него данные, изменять или проверять файловую систему и т д. Нельзя только изменить размер. То есть все полностью прозрачно, как и сказано в начале статьи.

Форматирование раздела

Давайте для начала отформатируем диск. Для надежности, чтобы стереть все данные, которые были в этом месте раньше, перезапишем наш шифрованный раздел linux нулями. Это уменьшит вероятность взлома шифрования, через увеличение количества случайной информации. Для этого выполните:

dd if=/dev/zero of=/dev/mapper/backup2

Работа утилиты может занять несколько часов, чтобы иметь возможность наблюдать за процессом, используйте pv:

pv -tpreb /dev/zero | dd of=/dev/mapper/backup2 bs=128M

Когда процесс завершится мы можем отформатировать устройство в любую файловую систему. Например, отформатируем в ext4:

mkfs.ext4 /dev/mapper/backup2

Как видите, все команды cryptsetup применяются к физическому разделу, в то время как остальные команды для работы с дисками - к нашему виртуальному.

Монтирование раздела

Теперь можно примонтировать только, что созданную файловую систему:

$ mount /dev/mapper/backup2 /backup2

Отключение раздела

Все работает, но как отключить устройство и защитить данные. Для этого выполните:

cryptsetup luksClose backup2

Повторное монтирование

Чтобы снова получить возможность работать с зашифрованным разделом с помощью LUKS linux необходимо опять его открыть:

cryptsetup luksOpen /dev/sda6 backup2

Теперь можем монтировать:

mount /dev/mapper/backup2 /backup2

Проверить файловую систему luks

Поскольку после открытия раздела с помощью luks linux, этот раздел воспринимается системой, как и все другие, вы можете просто использовать утилиту fsck:

sudo umount /backup2

$ fsck -vy /dev/mapper/backup2

$ mount /dev/mapper/backup2 /backu2

Изменить парольную фразу luks

Шифрование дисков Linux выполняется с определенной парольной фразой, но вы можете ее изменить. Даже больше, вы можете создать до восьми разных парольных фраз. Для изменения выполнив следующие команды. Сначала сделаем резервную копию заголовков LUKS:

cryptsetup luksDump /dev/sda6

Затем создадим новый ключ:

cryptsetup luksAddKey /dev/sda6

Enter any passphrase:

Enter new passphrase for key slot:
Verify passphrase:

И удалим старый:

cryptsetup luksRemoveKey /dev/sda6

Сейчас вам придется ввести еще старый пароль.

Выводы

Вот и все теперь вы знаете как зашифровать раздел в Linux, а также понимаете как все это работает. Кроме того, шифрование дисков в Linux по алгоритму LUKS открывает широкие возможности для полного шифрования устанавливаемой системы.

Плюсы:

  • LUKS шифрует все блочное устройство, и поэтому очень хорошо подходит для защиты содержимого переносных устройств, таких как мобильные телефоны, съемные носители или жесткие диски ноутбуков.
  • Вы можете использовать на серверах NAS для защиты резервных копий
  • Процессоры Intel и AMD с AES-NI (Advanced Encryption Standard) имеют набор команд, которые могут ускорить процесс шифрования на основе dm-crypt в ядре Linux начиная с 2.6.32.
  • Работает в том числе и с разделом подкачки, так что ваш ноутбук может использовать функцию спящего режима, или гибернации полностью безопасно.