Проекты. Управление GSM модулем с AVR

Может применяться в устройствах, где необходима связь на большие расстояния. Например, роботом в Москве человек управляет сидя в Краснодаре! Или фермер включает водяной насос на рисовом поле из своего дома, расположенного за несколько километров от поля! Есть несколько вариантов связи с устройством:

Простая связь на основе SMS сообщений:
Включение/выключение устройства при помощи простых SMS команд. Для управления устройством можно использовать любой мобильный телефон.
Охранная/пожарная сигнализация, которая информирует хозяина о чрезвычайной ситуации в доме при помощи SMS.

Связь на основе вызовов:
“Умная” охранная/пожарная сигнализация, которая вызывает полицию или пожарных и сообщает о чрезвычайной ситуации при помощи заранее записанных голосовых сообщений.

Связь с использованием интернета (GPRS) :
Пользователь может управлять устройством с любого ПК/планшета/мобильного телефона, подключенного к интернету. Например, информационные дисплеи, установленные на трассах, управляются из центральной диспетчерской.
Робот, управляемый через интернет. Такой робот доступен с любого устройства подключенного к интернету из любой точки мира.
Портативные устройства, установленные в транспортных средствах, которые подключаются к интернету с помощью GPRS модуля SIM300 и добавляют текущую позицию (с помощью GPS (Global Position System, Глобальная Система Позиционирования)) на сервер. Эти данные сохраняются с базу данных на сервере вместе с идентификатором автомобиля. Для просмотра маршрута автомобиля можно соединиться с сервером с компьютера при помощи World Wide Web (Всемирной Паутины).

Преимущества использования модуля SIM300

Набор SIM300 Kit является полностью самостоятельным модулем с разъёмом SIM-карты, блоком питания и т.д. Этот модуль может быть легко связан с дешевыми микроконтроллерами AVR/PIC/8051. Связь с микроконтроллером осуществляется через асинхронный последовательный порт. Это основной тип последовательной связи, который аппаратно поддерживается большинством микроконтроллеров. Данные передаются бит за битом и собираются в байты. На высоком уровне это выглядит как простой текстовый поток. Всего потоков два: один от микроконтроллера к SIM300 и другой от SIM300 к микроконтроллеру. Команды передаются как простой текст.

Если вы никогда не использовали последовательную передачу данных и не слышали о ней, то желательно разобраться в её работе и попрактиковаться на более простых примерах.

Связь с модулем SIM300 при помощи AVR UART

Аппаратная часть микроконтроллера, используемая для последовательной связи, называется UART, и мы используем его для связи с модулем SIM300 (Также он может использоваться для связи с другими устройствами, например считывателями RFID, GPS модулями, сканерами отпечатков пальцев и т.д.). UART является очень распространенным способом связи в мире электроники, мы написали для него чистую и простую библиотеку, которую мы применяем во всех своих проектах с использованием UART.

Поскольку байт от SIM300 может прийти на микроконтроллер в любое время, то, что произойдет, если микроконтроллер занят чем-то другим? Чтобы решить эту проблему, мы сделали буферизацию входящих данных, основанную на прерываниях. Буфер находится в оперативной памяти микроконтроллера. У него есть функция, позволяющая определить количество байт в очереди.

Ниже приведены функции библиотеки AVR USART:

void USARTInit(uint16_t ubrrvalue)

Инициализация аппаратной части AVR USART. Значением параметра ubrrvalue устанавливается желаемая скорость передачи данных. По умолчанию скорость передачи данных для SIM300: 9600 бит/сек. Для микроконтроллера AVR работающего на частоте 16 МГц значение ubrrvalue для такой скорости должно быть 103 .

char UReadData()

Чтение одного символа из очереди. Если в очереди ничего нет, то ответ 0.

void UWriteData(char data)

Записывает один байт данных на линию Tx, используя функцию UWriteString ().

uint8_t UDataAvailable()

Сообщает количество данных в очереди FIFO.

void UWriteString(char *str)

Записывает строку в Си стиле, оканчивающуюся нуль символом в линию Tx.
Пример 1: UWriteString("Hello World !");
Пример 2: char name="Avinash !"; UWriteString(name);

void UReadBuffer(void *buff,uint16_t len)

Копирует содержимое FIFO буфера в память, определенную buff, количество скопированных данных определяется параметром len. Если по UART в FIFO буфер пришло меньше данных, чем надо (в соответствии с параметром len), то оставшееся место будет заполнено нулями.

char gsm_buffer;
UReadBuffer(gsm_buffer,16);

Приведенный выше пример будет считывать 16 байт данных (если они есть) из FIFO буфера в переменную gsm_buffer . Обратите внимание, что gsm_buffer выделен массив 128 байт, поскольку позже нам может потребоваться более 16 байт. Таким образом, этот буфер можно будет использовать для чтения до 128 байт в дальнейшем.

Функция, показанная выше, обычно применяется вместе с UDataAvailable ().

while(UDataAvailable()<16)
{
//Do nothing
}

char gsm_buffer;
UReadBuffer(gsm_buffer,16);

Фрагмент кода показанный выше, ждет пока в буфере накопится 16 байт данных, а затем считывает их.

void UFlushBuffer()

Отменяет ожидание данных FIFO буфером. Прежде чем отправлять новую команду GSM модулю, сначала отмените ожидание данных FIFO буфером.

Приведенные выше функции используются для отправки и получения текстовых команд от GSM модуля SIM300.

Набор AT команд для SIM300

Теперь, года Вы знакомы с основами библиотеки AVR USART и её использованием для инициализации USART, отправки и получения данных, настало время, чтобы изучить команды модуля SIM300 и как отправлять их и принимать ответы. SIM300 имеет несколько функций: отправка текстового сообщения, звонок и т.д. Каждая из этих функций выполняется после определённой команды, и SIM300 имеет свой набор команд.

Все команды SIM300 начинаются с префикса AT+ и заканчиваются Carriage Return (сокращенно, возврат каретки). ASCII код CR - 0x0D (десятичное 13). Все команды, которые вы отправляете SIM300, будут возвращаться по TX линии SIM300. То есть если вы отправляете команду 7 байт (включая завершающий CR), то вы сразу получите эти 7 байт в буфер по UART. Если вы не получили её, то это значит, что-то не в порядке!

Первая функция, которую мы изучим будет SIM300Cmd(const char *cmd) , она выполняет следующие действия:

  • Пишет команды, заданные параметром cmd .
  • Добавляет CR после команды.
  • Ожидает возврата команды, и если она приходит до тайм-аута, она отвечает SIM300_OK (константа, определенная в sim300.h). Если возврата ждали слишком долго, а его не было, она отвечает SIM300_TIMEOUT.

Примечание: Все зависимые функции SIM300 хранятся в файле sim300.c. Образцы и константы хранятся в sim300.h

Работа с SIM300Cmd ()

Int8_t SIM300Cmd(const char *cmd) { UWriteString(cmd); //Send Command UWriteData(0x0D); //CR uint8_t len=strlen(cmd); len++; //Add 1 for trailing CR added to all commands uint16_t i=0; //Wait for echo while(i < 10*len) { if(UDataAvailable() < len) { i++; _delay_ms(10); continue; } else { //We got an echo //Now check it UReadBuffer(sim300_buffer,len); //Read serial Data return SIM300_OK; } } return SIM300_TIMEOUT; }

За командой обычно следует ответ. Форма ответа такая:
LF - Line Feed, его ASCII код 0x0A (10 в десятичной системе)

Таким образом, во время ожидания ответа после отправки команды могут случиться три вещи:

  • Ответа нет в течении длительного времени. Вероятной причиной может быть то, что SIM300 не подключен к микроконтроллеру.
  • Ответ получен, но не тот, который ожидался. Причиной может быть неисправность последовательной линии, неверно установленная скорость передачи данных или микроконтроллер, работающий с неверной частотой.
  • Получен правильный ответ.

Например, команда Get Network Registration (Регистрация в сети) выполняется следующим образом: Command String (Команда): "AT+CREG? "

Response (Ответ): +CREG: , OK

Вы видите правильный ответ 20 байт. То есть после отправки команды "AT + CREG?" необходимо ждать получения 20 байт или пока истечет определенное время. Второе условие выполняется во избежание зависания, если SIM300 неисправен. То есть вместо того, чтобы вечно ждать ответа, будет выдана ошибка, если SIM300 отвечает слишком долго (это называется тайм-аут)

Если получен правильного ответа, то мы анализируем переменную для получения информации о регистрации в сети.

В зависимости от текущего состояния регистрации в сети значение может быть: 0 - Не зарегистрирован, сейчас SIM300 не ищет нового оператора для регистрации. 1 - Зарегистрирован в домашней сети. 2 - Не зарегистрирован, сейчас SIM300 ищет нового оператора для регистрации. 3 - В регистрации отказано. 4 - Неизвестно. 5 - Зарегистрирован, роуминг.

Работа с SIM300GetNetStat ()

Int8_t SIM300GetNetStat() { //Send Command SIM300Cmd("AT+CREG?"); //Now wait for response uint16_t i=0; //correct response is 20 byte long //So wait until we have got 20 bytes //in buffer. while(i<10) { if(UDataAvailable()<20) { i++; _delay_ms(10); continue; } else { //We got a response that is 20 bytes long //Now check it UReadBuffer(sim300_buffer,20); //Read serial Data if(sim300_buffer=="1") return SIM300_NW_REGISTERED_HOME; else if(sim300_buffer=="2") return SIM300_NW_SEARCHING; else if(sim300_buffer=="5") return SIM300_NW_REGISTED_ROAMING; else return SIM300_NW_ERROR; } } //We waited so long but got no response //So tell caller that we timed out return SIM300_TIMEOUT; }

Точно так же реализована функция: int8_t SIM300IsSIMInserted()

При другом типе ответов мы не знаем заранее точный размер ответа как в приведенной выше команде. Например, это команда Get Service Provider Name(Получение названия оператора (провайдера)), где длина имени оператора неизвестна заранее. Это может быть MTS, Beeline и т.п.. Для решения этой проблемы мы пользуемся тем, что перед и после ответа находится CR LF . Таким образом, мы просто записываем в буфер все символы до тех пор, пока мы не встречаем CR , что означает конец ответа.

Для упрощения обработки таких команд, мы сделали функцию
SIM300WaitForResponse (uint16_t timeout)

Эта функция ждет ответа от SIM300 (конец ответа обозначается CR) и сообщает размер ответа, в то время, когда сам ответ копируется в глобальную переменную sim300_buffer .

Если ответ не получен до тайм-аута, то ответ 0. Время тайм-аута в миллисекундах можно задать параметром timeout . Она не считает запаздывающие LF или последние OK , они остаются в UART FIFO буфере. Поэтому перед возвратом мы используем команду UFlushBuffer () , чтобы удалить их из буфера.

Работа с SIM300WaitForResponse (uint16_t timeout)

Int8_t SIM300WaitForResponse(uint16_t timeout) { uint8_t i=0; uint16_t n=0; while(1) { while (UDataAvailable()==0 && n

Работа с SIM300GetProviderName (char *name) Функция выполняет следующие действия:

  1. Очищает USART буфер, чтобы удалить все ошибки или ответы.
  2. Отправляет команду "AT + CSPN?" используя функцию SIM300Cmd ("AT + CSPN?");
  3. Затем она ждет ответа, используя функцию SIM300WaitForResponse ()
  4. Если мы получаем не нулевой ответ, она разбирает его чтобы получить название оператора.

Подобным образом реализованы следующие функции:

  • uint8_t SIM300GetProviderName(char *name)
  • int8_t SIM300GetIMEI(char *emei)
  • int8_t SIM300GetManufacturer(char *man_id)
  • int8_t SIM300GetModel(char *model)
uint8_t SIM300GetProviderName(char *name) { UFlushBuffer(); //Send Command SIM300Cmd("AT+CSPN?"); uint8_t len=SIM300WaitForResponse(1000); if(len==0) return SIM300_TIMEOUT; char *start,*end; start=strchr(sim300_buffer,"""); start++; end=strchr(start,"""); *end="\0"; strcpy(name,start); return strlen(name); }

SIM300 и ATmega32. Аппаратная часть

Для демонстрации связи с SIM300 используя AVR ATmega32, нам понадобится следующие компоненты:
- ATmega32 с обвязкой – регистром сброса, ISP штырьками, кварцем 16 МГц.
- источник +5В для питания ATmega32 и ЖК-дисплея.
- символьный ЖК-дисплей 16x2 для индикации результатов.
- модуль SIM300.

Мы использовали отладочную плату Xboard , поскольку она имеет ATmega32 с обвязкой, источник +5В и ЖК-дисплей.

Демонстрационный исходный код для AVR и SIM300

Демонстрационный исходный код написан на языке C и скомпилирован с использованием бесплатного AVR-GCC компилятора, использую последнюю . Проект разделен на следующие модули:

  • Библиотека ЖК-дисплея
    - Файлы lcd.c, lcd.h, myutils.h, custom_char.h
    - Её работа заключается в контроле стандартного ЖК-дисплея 16x2.
    - Более подробную информацию можно найти по ссылке .
  • Библиотека USART
    - Файлы usart.c, usart.h
    - Её работа заключается в контроле аппаратного USART микроконтроллера AVR. Включает в себя функции инициализации USART, отправки/приема символов, отправки/приема строк.
  • Библиотека SIM300
    - Файлы sim300.c, sim300.h

Пошаговая настройка проекта AS6

Создайте новый проект AS6 под названием "Sim300Demo".
Используя solution explorer (дерево проектов) создайте папку с именем "lib" в текущей папке.
Внутри папки "lib" создайте папки "LCD", "USART" и "SIM300".
Скопируйте файлы (с помощью проводника Windows) lcd.c, lcd.h, myutils.h, custom_char.h в папку lcd.
Скопируйте файлы (с помощью проводника Windows) usart.c, usart.h в папку USART
Скопируйте файлы (с помощью проводника Windows) sim300.c, sim300.h в папку SIM300.
Добавьте файлы lcd.c, lcd.h, myutils.h, custom_char.h в проект с помощью solution explorer (дерева проектов).
Добавьте filesusart.c, usart.h в проект с помощью solution explorer (дерева проектов).
Добавить файлы sim300.c, sim300.h в проект с помощью solution explorer (дерева проектов).
Определите значение F_CPU = 16000000 использования AS6.
Скопируйте и вставите основной файл Sim300Demo.c в программу.
Скомпилируйте проект чтобы получить hex файл.
Прошейте Xboard с помощью USB программатора.
Если вы используете новый микроконтроллер ATmega32, установите LOW FUSE на 0xFF и HIGH FUSE на 0xC9 .

Что делает демонстрационная программа?

Инициализирует ЖК-дисплей и модуль SIM300.
Проверяет, что модуль SIM300 подключен к USART и реагирует должным образом.
Отображает IMEI SIM300 модуля.
Отображает ID производителя
Проверяет наличие SIM-карты.
Ищет GSM сеть и устанавливает соединение. Для этого должна быть активная SIM-карта.
Показывает название оператора, например MTS или Megafon.

Возможные проблемы

Нет изображения на ЖК-дисплее

Убедитесь, что в проекте AVR Studio установлена тактовая частота 16 МГц (16000000Hz)
Отрегулируйте контрастность потенциометром.
Нажмите кнопку сброса несколько раз.
Включите/выключите устройство несколько раз.
Подключайте ЖК-дисплей только так, как показано на схеме.

Во время инициализации SIM300 появляется ошибка "No Response (Нет ответа)"

Проверьте целость Rx, Tx и GND линий между SIM300 и Xboard.
Убедитесь, что микроконтроллер работает на частоте 16 МГц.
Установите фьюзы точно, как описано выше.

Ошибки компилятора

Многие люди используют уже написанные и скомпилированные программы. У них отсутствует опыт и они не знакомы с основами программирования и компиляции. Ознакомится с компиляторами и их работой на разных платформах (PC / MAC / Linux) будет отличным началом. Встроенные системы не подходят для изучения основ. Они предназначены тем, кто имеет эти навыки и просто пользуется ими.
Убедитесь, что все файлы библиотеки ЖК-дисплея добавлены к проекту.
Убедитесь, что AVR-GCC установлен. (Дистрибутив Windows называется WinAVR)
Убедитесь, что в проекте AVR Studio указан AVR GCC.

Общие советы для новичков

Используйте готовые отладочные платы и программаторы.
Попробуйте изучать , основываясь на статьях и учебниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATmega32

1 В блокнот
U2 Линейный регулятор

LM7805

1 В блокнот
D1 Выпрямительный диод

1N4007

1 В блокнот
D2 Светодиод 1 В блокнот
С1, С2 Конденсатор 22 пФ 2 В блокнот
С3, С4, С6 Конденсатор 0.1 мкФ 3

Итак, после продолжительного времени раскуривания тонкостей работы с GSM модулем SIM900D анонсируем первый рабочий проект, совмещающий в себе охранную систему с возможностью удаленного контроля. Если кратко, то устройство способно отправлять информирующие SMS в случае срабатывания датчика проникновения, делать дозвон для возможности аудиоконтроля помещения, следить за температурой и отправлять ее смс-кой по запросу, а также управлять какой-нибудь нагрузкой по команде отправленной по смс.

Кто следил за данной темой, тот в курсе, что у меня GSM модуль и модуль управления им - две разные платы, соединенные бутербродом (см. плата с SIM900D и плата управления ). На управляющей плате помимо микроконтроллера ATmega32a стоит модуль питания, выполненный на преобразователе LM2596 , он запитывает схему постоянным напряжением 3,5 вольт. В принципе подойдет любой другой источник питания, главное чтобы он был способен кратковременно вытянуть до 2 ампер (именно такое потребление GSM-модуля в момент регистрации).

Удобства ради, к плате управления подключен дисплей от телефона Nokia3310, методы работы с котором уже ни раз описывались на этом сайте. Благодаря дисплею можно быстро определить состояние устройства и значение датчиков.

В итоге получившаяся схема подключения вышла такая (кликабельно):

Нумерация выводов микроконтроллера на схеме приведена для DIP корпуса, поэтому если повторяете схему с использованием мк в корпусе TQFP будьте внимательны, нумерация выводов у него отличается. Тактируется микроконтроллер от внешнего кварца на 16 МГц.

Линия Control идущая от коллектора транзистора Q2 к выводу PortD.4 микроконтроллера добавлена для перестраховки и нужна за тем чтобы следить включен ли модуль. Так как порог выключения у SIM900 составляет 3,2 вольта то даже при незначительной просадке напряжения модуль автоматически выключится, тогда как микроконтроллер продолжит работать и выполнять программу (порог сброса у ATmega32a 2,7 вольта). В рабочем состоянии на этой линии находится низкий уровень. Если микроконтроллер обнаружит что на этой линии высокий уровень, выполнится функция повторного запуска GSM модуля.

А вот так это выглядит в работе на данный момент.

После окончательной обгонки программы, все это будет засунуто в корпус, а разъемные соединения для надежности будут запаяны.

На дисплей выводится основная информация о состоянии устройства: название оператора, качество сигнала связи, значение температуры с датчика 18b20, состояние выхода нагрузки и датчика проникновения, а так же время и дата.

Видео включения модуля

Время и дата берутся от встроенных в GSM-модуль часов. Для их работы обязательно наличие 3-х вольтовой батарейки подключенной к выводу 15 (VRTC). Диод D1 рекомендуется ставить с низким падением напряжения, например Шоттки. Настройка часов и даты делается в ручную, команды были описаны ранее

Дата выводится на дисплей в том формате как получается с модуля, тоесть сначала год, затем месяц и дата. Здесь пока ничего менять не стал.

За измерение температуры отвечает датчик DS18B20, он подключается к выводу PortD.3 микроконтроллера.

К PortD.6 можно подключить какую-нибудь нагрузку и управлять ей посредством команд смс. У меня сейчас висит светодиод - D4 на схеме. Но ничего не мешает повесить сюда релюху или симистор и управлять чем-нибудь посерьезней.

В охранных целях планируется применение датчика движения HC-SR501 , купленного на E-bay. В случае срабатывания на выходе датчика появляется логическая единица. Поймав ее, микроконтроллер даст команду на отправку SMS сообщения по телефонному номеру, заданному в программе.

Выход датчика подключается к выводу PortD.7 микроконтроллера, на схеме, датчик условно заменен на кнопку.

Заместо датчика движения можно ставить любые другие средства обнаружения проникновения - датчики открывания окон и дверей, датчики разбития стекла, фотоэлектрические датчики и др. в общем все на что способна фантазия.

Для того чтобы предотвратить многократное отсылание предупреждающих смс в случае срабатывания датчика, в программу введено ограничение: после первого отправленного смс ставится запрет на последующую отправку. Чтобы заново разрешить отправку уведомляющих сообщений при срабатывании датчика, необходимо отослать на модуль смс с определенной командой. Когда посылка смс запрещена на дисплей возле состояния датчика, выведется восклицательный знак.

Список команд

А вот и список команд в смс которые обрабатывает модуль. Для удобства и простоты комады цифровые, возможно в следующих версиях прошивки будут более осмысленные имена команд:)

0 - Отключение нагрузки (на выводе PortD.6 выставляется логический 0)

1 - Включение нагрузки (на выводе PortD.6 выставляется логическая 1)

2 - Приняв эту команду, модуль перезвонит на указанный в программе телефонный номер

3 - Запрос баланса и отправление его смс-кой обратно на указанный номер. Здесь есть один важный нюанс - ответы на USSD запросы обязательно должны приходить в латинице. Иначе заместо осмысленного текста в ответ придет сообщение в шестнадцатеричной кодировке. Как перевести USSD в латиницу нужно уточнить у своего оператора. К примеру, на используемой мной симке от Смартса, нужно ввести *102*1# (в мегафоне *105*0#)

4 - Запрос температуры. Значение температуры будет отправлено нам в смс.

5 - Разрешенить отсылать сообщения в случае срабатывания датчика проникновения.

6 - Запрет на отправление уведомляющих смс от датчика проникновения.

? - По этой команде модуль пришлет нам смс, в котором находится общая информация об устройстве, такие как значение с датчика температуры, включена ли нагрузка, состояние на входе от датчика проникновения и разрешена ли отправка уведомляющих смс от него. К примеру, вот как может выглядеть такое сообщение: температура +24, нагрузка выключена, на выходе датчика движения 0, отправка смс в случае срабатывания запрещена.

Теперь как настроить чтобы модуль отправлял sms именно на ваш номер. В архиве с программой находим основной файл программы, она так и называется "программа" :) и находим в ней константу:

Const Phonenumber = "+7908390хххх"

подставляем сюда свой номер телефона, компилируем программу и получаем hex файл прошивки.

Программа как и всегда написана в Bascom-AVR, поэтому разобраться с алгоритмом работы с GSM модулем достаточно просто. Удачи!

Ну и напоследок демонстрация того как модуль обрабатывает команды.

Отдельное спасибо за участие и помощь в разработке, давнему товарищу сайта Сергею RD3AVJ!

UPD: от 31.10.12

Немного доработал прошивку, теперь для того чтобы задать номер на который будут слаться уведомляющие SMS не нужно перекомпилировать программу. Достаточно послать на модуль смску с сообщением "Firstnumber" (без ковычек) и номер, с которого была отправлена эта команда, записывается в энергонезависимую память микроконтроллера.

Идея проекта: спроектировать устройство на базе микроконтроллера AVR для управления готовым GSM модулем (я выбрал модуль TC35 от SIEMENS, но можно использовать любой другой, если используется связь через последовательный порт RS232). Устройство должно быть компактным, минимально простым и надёжным.

Отправка заранее записанного в память сообщения на указанный номер должна выполняться после нажатия кнопки. Всего нужно было 6 кнопок для отправки на 6 различных номеров. Для индикации процессов были выбраны 3 светодиода (Ready, Send, Error), но в последствии был добавлен алфавитно цифровой LCD 16x2 (скорее, для отладки устройства, чем для обычного использования).

Проектировалось всё дело на плате Pinboard II (Rev 2) со стандартным процессорным модулем на ATmega16. На готовом устройстве схема была немного другой (и микроконтроллер использовался ATmega8). Программа писалась в AVR Studio 4.19. В проекте были использованы различные заголовочные файлы (#include) для переключения между Pinboard и готовым устройством.

Общая схема системы:


Для контроллера была выпилена такая платка:

Времени было много, поэтому в последствии я заказал платы у китайцев:

А когда с железом было закончено, следом пошёл процесс программирования. Всё написано на Си под AVR Studio 4.19. Полный проект выкладываю в конце статьи, если кому интересен полный код. Но пока поговорим об общении с GSM модулем.

Полный перечень AT команд есть на каждый модуль в его документации. Но отправка сообщения происходит несколькими командами.

//команда: AT+CMGF=1 //ответ модуля: OK
Переводит модуль в текстовый режим. Цифровой режим я пока не освоил (пока не было необходимости). Ответ модуля на начальных стадиях проекта никак не использовался. Но потом (когда был написан дешифратор команд) служил условием продолжения отправки или сообщения об ошибке протокола. Идём дальше:

Команда: AT+CMGS=(номер телефона) ответ модуля: > отправляем сообщение: Hello, GSM module! ответ модуля: +CMGS: 62 OK
После набора сообщения, нужно отправить не Enter (0x0D) а CTRL-Z (0x1A). Ответ модуля после отправки содержит порядковый номер отправляемого сообщения.

Для отправки команд в модуль в модуль и получения ответов я использовал два кольцевых буфера со входящими и исходящими индексами.

Для большей понятности кода приведу заголовки:

#define BUF_SIZE 128 #define BUF_MASK (BUF_SIZE-1) #define IN_BUF_SIZE 64 #define IN_BUF_MASK (IN_BUF_SIZE-1) volatile char buffer=""; volatile char inbuf="$"; //inner buffer of USART volatile uint8_t ind_in=0, ind_out=0, rxind_out=0, rxind_in=0, mess = 0;
Запись строк или отдельных символов в буфер производилась обычными функциями:

//sending RS232 with interupt void SendByte(char byte) { buffer = byte; ind_in &= BUF_MASK; } void SendStr(char *string) { while (*string!="\n") //check if End { SendByte(*string); string++; } }
А отправка производится через обработчик прерывания:

//Sending data from buffer ISR (USART_UDRE_vect) { UDR = buffer; //запись из буфера ind_out &= BUF_MASK; //проверка маски кольцевого буфера if (ind_in == ind_out) //если буфер уже пуст { UCSRB &= ~(1< Теперь для отправки нужно записать нужную команду в буфер (включая конечный символ \n), а затем включить прерывания опустошения регистра отправки (UDR):

SendStr("AT+CMGF=1\n"); SendByte(CR); //отправляем (0x0D) UCSRB &= ~(1< Пока идёт отправка, можно отправить надпись на LCD или просто подождать (delay).
Писать в это время в буфер нельзя. Опытным путём обнаружил, что модуль не успевает обработать сплошной потом команд. А остановка происходит, когда буфер пуст (входящий и исходящие индексы равны).

И таким образом мы отправляем сообщение. В зависимости от нажатой кнопки (в главном цикле я сканирую порт) происходит отправка сообщения:

While (1) { tmp = PINC; switch (tmp) { case 1: send_sms(0,NUM1); break; case 2: send_sms(0,NUM2); break; case 3: send_sms(0,NUM3); break; //и так далее... default: break; } Ready_Snd (); //перевод обратно в режим готовности }
В функцию отправки я посылаю номер выбранного сообщения (их у меня 2 типа) и номер телефона.
Можно даже отправить команду на звонок теми же AT командами. Всё зависит от необходимой функции.

Теперь о получении команд с модуля.

Модуль отправляет множество команд. Например, OK, RING, ERROR…
Иногда нужно, чтобы при получении команды контроллер смог опознать её и выполнить какое-то действие. Например, получен входящий звонок. Модуль при этом отправляет в контроллер:

RING RING RING
В зависимости от настроек модуля, может отправлять ещё и номер того, кто звонит. Пока нет никакой программы, контроллер ничего с этим сделать не сможет (в лучшем случае) или (в худшем) сделает что не то, а то и вовсе зависнет (не сможет выйти из прерывания).

Требования к коду обработки:
1. Минимальное количество времени на сохранение полученных команд. Никаких задержек в программе прерывания быть не должно. Потом уже с полученным массивом будем делать что угодно.

2. Сохранение всех полученных команд в одном буфере. Для разделения отдельных будем использовать символ $.

3. Распознавание распространенных команд в числовые коды. Например, OK будет 1, ERROR - 4, RING - 2.

Приведу заголовки из предыдущей статьи с поправками:

#define BUF_SIZE 128 //Исходящий буфер #define BUF_MASK (BUF_SIZE-1) #define IN_BUF_SIZE 64 //Входящий буфер #define IN_BUF_MASK (IN_BUF_SIZE-1) volatile char buffer=""; volatile char inbuf="$"; //inner buffer of USART volatile uint8_t ind_in=0, ind_out=0, rxind_out=0, rxind_in=0, mess = 0; volatile uint8_t com_detect=0; //сюда будет записана обнаруженная команда #define TIMEOUT 100 //на случай если команда так и не принята
Пишем обработчик прерывания приёма данных:

//recieving Data from RS232 ISR (USART_RXC_vect) { uint8_t tmp; tmp = UDR; if (tmp == 0x0D) //получен конец команды - { mess++; //one more message inbuf = "$"; //вставляем разделитель в буфер rxind_in &= IN_BUF_MASK; } else { if (tmp != 0x0A) //очистка непонятного символа с модуля { inbuf = tmp; //записываем в буфер rxind_in &= IN_BUF_MASK; } } sei (); }
Теперь у нас все команды записаны в буфере. Можно в свободное время проверить переменную mess и если она не равна нулю - запустить обработчик команды. В самом проекте были добавлены команды для LCD экрана. Здесь я их пропущу за ненадобностью.

Void rx_check_in (void) { uint8_t count=0; com_detect = 0; //обнуление команды (чтобы не мешал предыдущий мусор) while (1) { if (inbuf != "$") //обнаружен конец команды (разделитель) { com_detect ^= inbuf; //делаем XOR полученным символам rxind_out &= IN_BUF_MASK; count++; //считаем, сколько символов в команде } else { rxind_out++; rxind_out &= IN_BUF_MASK; code_com (count); //!! важная часть - раскодировать команду break; } } }
Полученные символы мы пропускаем через мясорубку. Делаем XOR операцию. Получаем таким образом уникальный код (не уверен на счёт уникальности, но пока не подводило). R^I^N^G нам даст 0x12. O^K даст 0x04. Этот код и количество символов (в команде) сохранены в переменных com_detect (глобальная) и count. Теперь запустим обработчик:

Void code_com (uint8_t count) { switch (com_detect) { case (0x12): if (count == 4) com_detect = 2; break; //R^I^N^G case (0x58): if (count == 5) com_detect = 3; break; //ERROR case (0x04): if (count == 2) com_detect = 1; break; //OK case (0x5C): if (count == 3) com_detect = 4; break; //ATI default: com_detect = 0; } }
Распознали команду. Количество символов я ввёл для надёжности на случай если в длинной команде XOR код совпадёт. Распознаваемые команды можно добавлять. Нужно только подсчитать (или макросом) XOR код желаемой команды и присвоить ей цифру.

Теперь в com_detect у нас полученная команда. Теперь устройство может отреагировать SMS сообщением на полученный звонок:

While (1) { if (mess != 0) //if we have mess in buffer { // code mess--; //minus one rx_check_in (); //распознаём отдельную команду if (com_detect == 2) //если была команда RING (код 2) { //Посылаем сообщение // и принимаем входящие команды (OK) if (!send_sms (1,NUM0)) ErrMes (); //если после отправки не было команды OK } //тогда выдать сообщение о ошибке протокола com_detect = 0; //обнуляем команду }
Так можно обрабатывать разные полученные команды.

Итог: устройство умеет отправлять сообщение на телефон и умеет реагировать на различные команды от GSM модуля.

Спасибо за внимание.

Наконец-то мне удалось заняться изучением, пожалуй самого популярного в DIY среде GSM модуля — GSM900. Что такое GSM модуль? Это устройство, которое реализует функции сотового телефона. Другими словами, GSM900 позволяет звонить другим абонентам сотовой сети, принимать звонки, отправлять и принимать SMS-сообщения. А еще, разумеется, передавать данные по протоколу GPRS.

Мне этот модуль понадобился для вполне конкретной цели: появился проект системы освещения, управляемой дистанционно. Проще всего эта задача решается SMS-сообщениями: отправил одну sms — свет включился, отправил другую — выключился. Никаких пультов не надо, а телефон есть у всех (даже у бомжей). Собственно, в этой статье я рассмотрю именно этот вариант использования модуля GSM900.

1. Прошивка

Волею судеб, у меня в руках оказался модуль GSM900A. Прочитав первый попавшийся форум про оживление этой штуки, выяснилось, что буква A в названии означает принадлежность модуля к азиатскому региону. А следовательно, работать с нашими операторами он не станет. Уныние 🙁

Благо, в следующих постах на том же форуме содержалась успокаивающая информация:) Оказалось, что не всё так плохо, и чтобы модуль заработал в нашем регионе, его нужно попросту перепрошить. Этот процесс хорошо описан в блоге нашего соратника Alex-EXE: прошивка «all in one» sim900
Попробую сделать то же самое, но еще более подробно, и с учетом особенностей моего модуля.

Если у вас правильный модуль и прошивка не требуется, можно сразу прыгать на раздел №2.

Инструменты

Итак, для начала подготовим все необходимые инструменты. Во-первых, непосредственно для прошивки потребуется приложение SIM900 Series download Tools Develop, которое можно легко найти в интернете ().

Во-вторых, пригодится и сам файл прошивки 1137B02SIM900M64_ST_ENHANCE, который тоже легко добывается ().

Наконец, в-третьих, нам нужен будет хороший терминал для экспериментов с модулем. Обычно я использую TeraTerm, но в этот раз его возможностей нехватило (или я не разобрался). Пришлось установить монстра с гениальным названием .

Подключение к USB-UART мосту

Теперь подключаем линии RX и TX к мосту. В качестве последнего я использовал CP2102. В моем случае, вопреки логике, RX и TX моста соединялись с RX и TX GSM-модуля симметрично (а не крест-накрест, как принято).

Также следует запитать модуль от стабильного и мощного источника, так как пиковый ток на модуле может достигать 2А (якобы). Подойдут 4 аккумулятора типоразмера AA. Полная схема включения выглядит так:

SIM900
CP2102 Gnd Gnd
CP2102 +5V VCC_MCU
CP2102 RX SIMR
CP2102 TX SIMT
Внешний источник +5В VCC5
Внешний источник Gnd Gnd
RST

У данной модели нет кнопки сброса, так что для прошивки нам потребуется на пару секунд кинуть контакт RST на землю. Для этого мы пока оставим его висеть в воздухе.

Предварительная настройка модуля

Перед тем, как приступить к прошивке, мы соединимся с модулем, и изменим ему скорость UART. Для этого запустим терминал Terminal, выберем правильный порт, и установим скорость обмена — 9600. После этого жмем «Connect».

Всё общение с модулем происходит посредством AT-команд.

Первое что мы скажем модулю будет самая примитивная AT-команда: «AT». Это такой своеобразный ping, на который модуль должен ответить словом «OK».

Если все прошло успешно, и модуль действительно ответил нам «OK», отправляем команду настройки скорости:

AT+IPR=115200

В конце команды должен стоять служебный символ возврата каретки — CR. В ASCII таблице он имеет код 13 (или 0x0D в шестнадцатеричной системе). Символ подставится автоматически, если вы поставите галку «+CR» напротив строки ввода в нашем терминале. В других терминалах тоже есть подобные настройки.

В ответ на введенную команду снова получим — «OK».

Данная настройка понадобится нам для ускорения процедуры прошивки. В противном случае, как указал в своем блоге Alex-EXE, прошивка займет около часа.

Настройка программы

После того, как все провода воткнуты в нужные места, и модуль подготовлен к прошивке, запускаем приложение SIM900 Series download Tools Develop. Настройка программы состоит всего из нескольких пунктов:

  • в поле Target указываем целевой чип. Почему-то у меня не вышло залить прошивку на SIM900A, так что я выбрал «SIM900»;
  • выбираем правильный порт в поле Port;
  • Baud Rate ставим в 115200;
  • наконец, указываем файл прошивки в поле Core File (файл с расширением cla).

С настройкой всё.

Прошивка

Теперь выполняем строго и последовательно шесть важных шагов.

  • Подключаем к модулю питание (наши 4 аккумулятора). Должна загореться красная лампа питания, а лампа статуса должна начать мигать.
  • Подключаем USB-UART к компьютеру.
  • Замыкаем провод RST на землю (помним, что все это время он болтался в воздухе).
  • Нажимаем в программе кнопку Start Download.
  • Считаем в уме до трех, и отрываем RST от земли.

Ждем 6 минут до завершения прошивки.

Что мы имеем после прошивки

Во-первых, модуль теперь умеет работать с нашими операторами. Во-вторых, мы поставили расширенную прошивку, среди особенностей которой, к примеру, получение координат модуля по сотовым вышкам, работа с электронной почтой и доступ к дополнительным 2.5 Мб памяти.

2. Эксперименты с GSM модулем

Попробуем теперь выполнить разные полезные операции с модулем. Для начала, введем ПИН-код (если он есть):

AT+CPIN=8899

Ответ модуля будет таким:

CPIN: READY.

После этого получим от модуля немного информации.

AT+GMR - идентификатор прошивки. AT+GSN - IMEI. AT+CPAS - состояние (0 – готов к работе, 2 – неизвестно, 3 – входящий звонок, 4 – голосовое соединение). AT+COPS? - информация об операторе.

Телефонные вызовы

Теперь наберем какой-нибудь номер. Делается это с помощью команды:

ATD+790XXXXXXXX;

Точка с запятой в конце команды очень важна, на забудьте про неё!

Если во время UART сеанса на устройство кто-нибудь позвонит, вернется сообщение:

Ответить на звонок (взять трубку) можно командой:

Если к модулю подключены наушники и микрофон, то можно пообщаться с удаленным абонентом как по обычному сотовому телефону.

Завершает вызов команда:

Отправка SMS

Сначала включим текстовый режим сообщений:

AT+CMGF=1

и установим кодировку:

AT+CSCS= "GSM"

Модуль поддерживает и другие кодировки, более удобные для автоматических систем. Но нам для экспериментов удобнее всего использовать именно GSM режим, в котором телефон задается цифрами, а текст сообщений пишется в ASCII кодировке. Теперь отправим кому-нибудь сообщение:

AT+CMGS="+79123456789"

А конце команды необходимо добавить сразу два служебных символа: CR и LF. В Terminal это можно сделать галочкой CR=CR+LF, либо вручную добавив в конце строки: AT+CMGS=»+79123456789″&0D&0A

После ввода этой команды, в ответ будет получен символ «>», означающий начало ввода сообщения. Пишем какой-нибудь текст:

Hello World!

В конце сообщения нам нужно будет передать один из двух специальных символов. Чтобы отправить сообщение введем символ из ASCII таблицы с номером 26. Чтобы отменить отправку — символ с номером 27.

В используемом нами терминале для отправки символа по коду можно использовать одно из двух выражений: в шестнадцатеричном формате: $1A, и в десятеричном: #026

Прием SMS

Если во время сеанса на устройство придет SMS, вернется сообщение формата:

CMTI: "SM",4

здесь 4 — это номер входящего непрочитанного сообщения.

AT+CMGR=4

В ответ получим:

CMGR: "REC READ","+790XXXXXXXX","","13/09/21,11:57:46+24" Hello World! OK

В общем, все просто. Этого нам вполне достаточно для реализации задуманного. Для более глубокого изучения возможностей GFM900 рекомендую почитать еще одну статью Alex-EXE: at-команды gsm модема sim900

3. Взаимодействие с микроконтроллерами

Вообще, чтобы управлять внешними устройствами вовсе не обязательно спаривать модуль GSM900 с другим микроконтроллером. В этот модуль можно зашить свою программу, которая будет делать всё что угодно со свободными GPIO выводами. Однако, в большинстве готовых плат GPIO не разведены, поэтому для создания прототипа задуманного устройства воспользуемся самой простой Arduino Uno/Nano.

Общаться Arduino и GSM900 будут всё по тому же UART интерфейсу. Для этого соединим эти два устройства по следующей схеме:

GSM900 GND VCC_MCU SIMT SIMR
Ардуино Уно GND +5V RX TX

Теперь составим программу, которая будет ловить СМС-ки, и зажигать светодиод на ноге №13 на пару секунд. Этим мы имитируем управление неким внешним устройством.

Const String spin = "1234"; const int rel_pin = 13; String ss = ""; // Отправка пин-кода void sendPin(){ String cmd = "AT+CPIN="+spin+char(0x0D); Serial.print(cmd); } // Включение светодиода на 2 секунды void receiveSMS(String s){ digitalWrite(rel_pin, HIGH); delay(2000); digitalWrite(rel_pin, LOW); } // Разбор строки, пришедшей из модуля void parseString(String src){ bool collect = false; String s = ""; for(byte i=0; i

Загружаем программу на Arduino, и тестируем систему. Если всё сделано правильно, отправка SMS сообщения на устройство приведет к включению светодиода на 2 секунды. Разумеется, вместо светодиода можно включать/выключать мощное реле, к которому подключен котел отопления в загородном доме.