Геоинформационные системы кратко. Что такое ГИС? Ключевые преимущества ГИС

Геоинформационная система

Геоинформационная система

Геоинформационные системы (также ГИС - географическая информационная система ) - системы, предназначенные для сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о представленных в ГИС объектах. Другими словами, это инструменты, позволяющие пользователям искать, анализировать и редактировать цифровые карты , а также дополнительную информацию об объектах, например высоту здания, адрес, количество жильцов.

ГИС включают в себя возможности cистем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяются в картографии , геологии , метеорологии , землеустройстве , экологии , муниципальном управлении , транспорте , экономике , обороне и многих других областях.

По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п. ; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой .

История ГИС

Начальный период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Структура ГИС

  1. Данные (пространственные данные):
    • позиционные (географические): местоположение объекта на земной поверхности.
    • непозиционные (атрибутивные): описательные.
  2. Аппаратное обеспечение (ЭВМ, сети, накопители, сканер, дигитайзеры и т. д.).
  3. Программное обеспечение (ПО).
  4. Технологии (методы, порядок действий и т. д.).

Вопросы на которые может ответить ГИС

  1. Что находится в…? (определяется место).
  2. Где это находится? (пространственный анализ).
  3. Что изменилось начиная с…? (определить временные изменения на определенной площади).
  4. Какие пространственные структуры существуют?
  5. Что если? (моделирование, что произойдет, если добавить новую дорогу).

ГИС в России

Наибольшее распространение в России из зарубежных систем имеют: программный продукт ArcGIS компании ESRI , семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo.

Из отечественных разработок широкое распространение получила программа ГИС Карта 2008 компании ЗАО КБ "Панорама" .

Используются также и другие программные продукты отечественной и зарубежной разработки: ГИС ИНТЕГРО , MGE корпорации Intergraph (использует MicroStation в качестве графического ядра), IndorGIS , STAR-APIC , ДубльГИС , Mappl, ГеоГраф ГИС и пр.

Литература

  • Журкин И. Г., Шайтура С. В. Геоинформационные системы. - Москва: КУДИЦ-ПРЕСС, 2009. - 272 с. ISBN 978-5-91136-065-8
  • Браун Л.А. История географических карт. Москва: Центрполиграф, 2006. - 479 с. ISBN 5-9524-2339-6 [История ГИС от древности до ХХ века].

См. также

Программные продукты ГИС общего назначения

Платные

Бесплатные

Специализированные программные продукты ГИС

Некоммерческие организации и объединения

Веб-сайты, посвящённые ГИС

ГИС-сообщества

  • Официальный сайт Дня ГИС (англ.)
  • Open Geospatial Consortium (OGC) (англ.) - международный некоммерческий консорциум разработчиков открытых ГИС-технологий

ГИС-технологии сегодня используются практически везде - в лесообработке, строительстве, картографии, экологии, сейсмологии и так далее. Их изучают в университетах и научных институтах. ГИС-технологии это целая индустрия, которая влияет на практически все аспекты человеческой жизни. Но при этом дать четкое определение этому виду технологий очень сложно. Ведь это не просто набор систематизированных знаний. Это особый взгляд на окружающий мир. О том, как работают ГИС-технологии и для чего они предназначены, расскажет вам наша статья.
Что такое ГИС?
ГИС – это географическая информационная система. Она позволяет картировать объекты окружающего мира, а затем анализировать их по огромному количеству параметров, визуализировать их и на основе этих данных прогнозировать самые различные события и явления. Столь мощная технология позволяет решать при помощи ГИС огромное количество задач, как глобальных, так и частных. ГИС-технологии могут стоять на службе у всего человечества, предотвращая экологически катастрофы или помогая решать проблемы перенаселения отдельных регионов.
ГИС можно использовать и для нужд отдельных компаний, налаживать с его помощью эффективно работающий бизнес. Например, перевозочная компания при помощи специальных баз данных может подбирать оптимальные маршруты для своих транспортных средств, коммунальные службы – прокладывать коммуникации к новым домам и так далее.
Как работает ГИС?
Информационная система – это огромная база цифровых данных, преобразованных в цифровой формат. Они представляют собой детализованные слои, объединенные по географическому признаку и привязанных к определенной системе координат. Любые происходящие события могут с успехом отслеживаться по такой базе данных. Кроме того, с ее помощью можно найти практически любую точку земного шара, отследить движение практически любого объекта.
Базы данных ГИС способны выполнять пять различных задач. Вы можете осуществлять ввод актуальных данных в базу, причем в большинстве случаев это происходит автоматически при помощи сканера. Вы можете манипулировать данными, масштабировать их по своему усмотрению, собирать необходимые для решения определенной задачи сведения. Как и обычными базами данных, системой ГИС можно управлять. Это делается по средствам целого набора интегрированных приложений.
Большое количество данных, содержащихся в базе, дает широкие возможности для анализа по самым различным параметрам. Вы можете найти свободные участки для строительства дома, оптимальным образом сформировать транспортные потоки, проанализировать близость различных объектов (например, определить количество человек, живущих в шаговой доступности от вашего магазина), наложить друг на друга различные показатели и проанализировать получившуюся картину.
Последняя задача, которую позволяет выполнять ГИС, это визуализация данных. Вы можете получить карты, графики, таблицы и даже фотографии интересующей вас местности. Эти данные имеют огромное значение как для научных исследований, так и для работы отдельных компаний и организаций.

Где применяются ГИС-технологии?
Из предложенных выше описаний становится понятно, что ГИС-технологии находят широкое применение в самых различных областях деятельности. Но что конкретно они могут делать? Приведем несколько примеров, которые показывают в чем реальная польза ГИС-технологий.
· Выявив взаимосвязь между различными показателями, вы можете разрабатывать более эффективные технологии работы, экономить достаточно большие средства. Проанализируйте, как соотносится между собой тип почвы, климат и урожайность определенных сельскохозяйственных культур, и вы поймете, где лучше всего заниматься их выращиванием.
· Задав определенные критерии поиска, вы легко можете найти необходимый вам объект, и, не тратя лишнего времени, заниматься его освоением. Найти квартиру, которая будет иметь определенное количество комнат, метраж кухни и при этом будет расположена недалеко от работы и школы ваших детей теперь очень просто.
· ГИС могут быть оказывать положительное влияние на бизнес-процессы, происходящие внутри организаций. Огромная база данных может быть полезна в любой сфере, ведь дает возможности для четкого планирования работы. Коммунальные службы могут не только оперативно отслеживать износ оборудования и планировать профилактические работы, но и оповещать об этом тех жителей, которых это коснется.
· Сегодня карты городов и местностей быстро устаревают – ведется новое строительство, проектируются дороги. ГИС позволяют отслеживать эти изменения и вносить их в базу данных практически молниеносно. Запущенная в виртуальную сеть, такая карта позволит всегда иметь под рукой актуальные данные.

ГИС-технологии – это не просто компьютерная база данных. Это огромные возможности для анализа, планирования и регулярного обновления информации. ГИС-технологии сегодня находят применение практически во всех сферах жизни, и это помогает действительно эффективно решать многие задачи.

Геоинформационная система - система сбора, хранения, анализа и графической визуализации пространственных(географических) данных и связанной с ними информации о необходимых объектах. Также используется в более узком смысле - как инструмента (программного продукта), позволяющего пользователям искать, анализировать и редактировать как цифровую карту местности, так и дополнительную информацию об объектах.

"Географическая информационная система" - это совокупность аппаратно-программных средств и алгоритмических процедур, предназначенных для сбора, ввода, хранения, математико-картографического моделирования и образного представления геопространственной информации.

Геопространственные данные" означают информацию, которая идентифицирует географическое местоположение и свойства естественных или искусственно созданных объектов, а также их границ на земле. Эта информация может быть получена с помощью (помимо иных путей), дистанционного зондирования, картографирования и различных видов съемок.

Географические данные содержат четыре интегрированных компонента: местоположение,

Свойства и характеристики, пространственные отношения, время.

ГИС: география,картография,дистанционное зондирование,топография и фотограмметрия,информатика,математика и статистика.

2.Сферы использования гис.

ГИС включает в себя возможности систем управления базами данных (СУБД), редакторов растровой и векторной графики и аналитических средств и применяется в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях.

3.Классификация гис.

По функциональным возможностям: - полнофункциональные ГИС общего назначения;

Специализированные ГИС, ориентированные на решение конкретной задачи в какой либо предметной области;

Информационно-справочные системы для домашнего и информационно-справочного пользования. Функциональные возможности ГИС определяются также архитектурным принципом их построения:

Закрытые системы не имеют возможностей расширения, они способны выполнять только тот набор функций, который однозначно определен на момент покупки; - открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).

По пространственному (территориальному) охвату ГИС подразделяются на глобальные (планетарные), общенациональные, региональные, локальные (в том числе муниципальные).

По проблемно-тематической ориентации – общегеографические, экологические и природопользовательские, отраслевые (водных ресурсов, лесопользования, геологические, туризма и т. д.).

По способу организации географических данных – векторные, растровые, векторно-растровые ГИС.

4. Структура гис.

Непозиционные (атрибутивные): описательные.

Данные (пространственные данные):

Позиционные (географические): местоположение объекта на земной поверхности.

Аппаратное обеспечение (ПК, сети, накопители, сканеры, плоттеры и т. д.).

Программное обеспечение (ПО).

Технологии (методы, порядок действий и т. д.).

ГИС (ДубльГИС Барнаул)

Однозначное краткое определение этому явлению дать достаточно сложно. Географическая информационная система (ГИС) - это возможность нового взгляда на окружающий нас мир. Если обойтись без обобщений и образов, то ГИС - это современная компьютерная технология для картирования и анализа объектов реального мира, также событий, происходящих на нашей планете. Эта технология объединяет традиционные операции работы с базами данных, такими как запрос и статистический анализ, с преимуществами полноценной визуализации и географического (пространственного) анализа, которые предоставляет карта. Эти возможности отличают ГИС от других информационных систем и обеспечивают уникальные возможности для ее применения в широком спектре задач, связанных с анализом и прогнозом явлений и событий окружающего мира, с осмыслением и выделением главных факторов и причин, а также их возможных последствий, с планированием стратегических решений и текущих последствий предпринимаемых действий. Создание карт и географический анализ не являются чем-то абсолютно новым. Однако технология ГИС предоставляет новый, более соответствующий современности, более эффективный, удобный и быстрый подход к анализу проблем и решению задач, стоящих перед человечеством в целом, и конкретной организацией или группой людей, в частности. Она автоматизирует процедуру анализа и прогноза. До начала применения ГИС лишь немногие обладали искусством обобщения и полноценного анализа географической информации с целью обоснованного принятия оптимальных решений, основанных на современных подходах и средствах. В настоящее время ГИС - это многомиллионная индустрия, в которую вовлечены сотни тысяч людей во всем мире. ГИС изучают в школах, колледжах и университетах. Эту технологию применяют практически во всех сферах человеческой деятельности - будь то анализ таких глобальных проблем как перенаселение, загрязнение территории, сокращение лесных угодий, природные катастрофы, так и решение частных задач, таких как поиск наилучшего маршрута между пунктами, подбор оптимального расположения нового офиса, поиск дома по его адресу, прокладка трубопровода на местности, различные муниципальные задачи. По территориальному охвату различают глобальные ГИС (global GIS), субконтинентальные ГИС, национальные ГИС, зачастую имеющие статус государственных, региональные ГИС (regional GIS), субрегиональные ГИС и локальные, или местные ГИС (local GIS).

ГИС различаются предметной областью информационного моделирования, к примеру, городские ГИС, или муниципальные ГИС, МГИС (urban GIS), природоохранные ГИС (environmental GIS) и т. п.; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы. Проблемная ориентация ГИС определяется решаемыми в ней задачами (научными и прикладными), среди них инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений. Интегрированные ГИС, ИГИС (integrated GIS, IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.

Полимасштабные, или масштабно-независимые ГИС (multiscale GIS) основаны на множественных, или полимасштабных представлениях пространственных объектов (multiple representation, multiscale representation), обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением. Пространственно-временные ГИС (spatio-temporal GIS) оперируют пространственно-временными данными. Реализация геоинформационных проектов (GIS project), создание ГИС в широком смысле слова, включает этапы: предпроектных исследований (feasibility study), в том числе изучение требований пользователя (user requirements) и функциональных возможностей используемых программных средств ГИС, технико-экономическое обоснование, оценку соотношения «затраты/прибыль» (costs/benefits); системное проектирование ГИС (GIS designing), включая стадию пилот-проекта (pilot-project), разработку ГИС (GIS development); её тестирование на небольшом территориальном фрагменте, или тестовом участке (test area), прототипирование, или создание опытного образца, или прототипа (prototype); внедрение ГИС (GIS implementation); эксплуатацию и использование. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.

История ГИС

Начальный период (поздние 1950е - ранние 1970е гг.)

Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.

  • Появление электронных вычислительных машин (ЭВМ) в 50-х годах.
  • Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х.
  • Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров.
  • Создание формальных методов пространственного анализа.
  • Создание программных средств управления базами данных.

Период государственных инициатив (нач. 1970е - нач. 1980е гг.)

Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:

  • Автоматизированные системы навигации.
  • Системы вывоза городских отходов и мусора.
  • Движение транспортных средств в чрезвычайных ситуациях и т. д.

Период коммерческого развития (ранние 1980е - настоящее время)

Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.

Пользовательский период (поздние 1980е - настоящее время)

Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.

Принцип работы ГИС

ГИС хранит информацию о реальном мире в виде набора тематических слоев, которые объединены на основе географического положения. Этот простой, но очень гибкий подход доказал свою ценность при решении разнообразных реальных задач: для отслеживания передвижения транспортных средств и материалов, детального отображения реальной обстановки и планируемых мероприятий, моделирования глобальной циркуляции атмосферы. Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам, или ссылки на адрес, почтовый индекс, избирательный округ или округ переписи населения, идентификатор земельного или лесного участка, название дороги и т.п. При использовании подобных ссылок для автоматического определения местоположения или местоположений объекта (объектов) применяется процедура, называемая геокодированием. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект или явление, такие как дом, в котором проживает ваш знакомый или находится нужная вам организация, где произошло землетрясение или наводнение, по какому маршруту проще и быстрее добраться до нужного вам пункта или дома.

Векторная и растровая модели

ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми. В векторной модели информация о точках, линиях и полигонах кодируется и хранится в виде набора координат X,Y. Местоположение точки (точечного объекта), например буровой скважины, описывается парой координат (X,Y). Линейные объекты, такие как дороги, реки или трубопроводы, сохраняются как наборы координат X,Y. Полигональные объекты, типа речных водосборов, земельных участков или областей обслуживания, хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как типы почв или доступность объектов. Растровая модель оптимальна для работы с непрерывными свойствами. Растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке. Обе модели имеют свои преимущества и недостатки. Современные ГИС могут работать как с векторными, так и с растровыми моделями.

Слои ГИС

Вся картографическая информация в ГИС организована в виде слоев. Слои, это самый первый уровень абстракции в ГИС. Работая с ГИС, мы обязаны разделить существующие у нас данные на слои. Каждый слой содержит объекты определенного вида, объединенные общими характеристиками. Работая в ГИС, мы можем подключать и отключать интересующие нас слои, или менять порядок их отображения. Слои бывают следующих типов:

Точечные

Точечные слои содержат объекты, которые можно абстрагировать до точки, например скважины или города. Ради ясности понимания даже город можно представить точкой.

Линейные

Эти объекты можно абстрагировать до ломаной или гладкой линии, например реки, дороги, или трубопроводы.

Полигональные или площадные

Объекты этого типа представляются как находящиеся в пределах некоторого полигона, например лицензионные участки.

Площадные объекты могут состоять из нескольких контуров. Это необходимо если требуется представить полигон с дыркой внутри. На рисунке представлен пример обычного полигона и полигона, состоящего из двух контуров.

Последняя точка полигона всегда должна совпадать с первой точкой. Правильно это или нет, но так уж повелось в геоинформационных системах. Таким образом, полигон не может иметь менее четырех точек. Если полигон имеет нулевую площадь, то есть вырождается, то его необходимо удалить. Полигон также не должен иметь самопересечений. Подобные недочеты позже могут привести к серьезным ошибкам в расчетах, и потому их следует избегать.

Изображения

Растровые графические изображения, привязанные к географическим координатам, например космоснимки или отсканированые карты.

Сеточные модели

Это структурные карты и карты параметров. Первоначально такие модели основывались на прямоугольной сетке, где в узлах сетки указано значение Z (параметра).

Теперь строение подобных моделей зачастую боле сложное, но по традиции их продолжают называть сетками или гридами. Современные гриды могут содержать разломы, области уточнения или быть основаны на сплайнах. Смысл сеточных моделей остается прежним: непрерывное представление параметра на определенной площади.

Сетка сплайнов отличается от обычной сетки тем, что ее поверхность является идеально гладкой, что более естественно для большинсва моделей. Сетки с разломами содержат дополнительные сегменты для моделирования ровного разрыва. На обычной сеточной модели разрыв получается ступенчатым. Сеточные модели, также называют картами в изолиниях.

Специальные виды слоев

Эти пять типов слоев стандартны для любой профессиональной ГИС, но кроме них могут существовать и другие, специальные типы данных, обусловленые областью применения данной системы. Например, это могут быть разломы (для моделирования сеток с разломами), растровые карты (для представления очень больших растровых изображений), 3D модели (для трехмерных моделей пластов).

Таблицы данных ГИС

Точки линии и полигоны имеют таблицы аттрибутивных данных для своих объектов.

Каждому объекту на карте соответствует строка в таблице данных. Используя таблицу данных можно находить и сортировать объекты, выделять их на карте по аттрибутам или смотреть атрибуты выделенных объектов. Атрибутивная таблица позволяет искать объекты, сортировать их, выделять по условиям, группировать, создавать фильтры, проводить вычисления. Таблица аттрибутов превращает ГИС в базу данных, в которой вы можете проводить анализ данных или управление данными при помощи развитых инструментов ГИС. Без таблиц аттрибутов геоинформационные системы не имели бы смысла, а карты в них не были бы картами, а были просто рисунками, как рисунки в CorelDraw или Paint.

Точки в составе линий и полигонов также имеют свои аттрибутивные таблицы. Так, например, сейсмопрофили можно загрузить вместе с данными по отпикированным горизонтам и использовать их для построения карт в изолиниях. Таблица данных поддерживает понятие выделенных объектов, такие строки в таблице помечены другим цветом. Выделенные объекты также, несколько иначе отображаются и на карте. Выделение объектов очень часто используется при анализе данных. Выделять объекты можно как в таблице, так и на карте, а также по заданным условиям.

Формирование слоев

Очень важной темой является правильное формирование структуры слоев. Полезность любой базы данных, и ГИС в том числе, сильно зависит от правильной структуры данных. Даже можно сформулировать следующее: полезность базы прямо пропорциональна ее правильной организации и порядку в данных. Если данные в базе содержат большое количество ошибок или неправильно организованы, то это может свести на нет все достоинтва базы данных как таковой. По этой причине важным является умение правильно структурировать информацию. Например, если вы загружаете данные сейсморазведки, то правильно будет объединить все сейсмопартии в одном слое, а не создавать несколько слоев групируя их по районам или площадям. Лучше придерживаться такого правила: один тип данных - одна таблица (или один слой). С другой стороны разнородные объекты лучше помещать в разные слои, даже если они объеденены общей тематикой. Так автодороги и железные дороги лучше разделить на два слоя, а потом поместить их в группу "Транспортные пути".

Координаты

Всем известно, что земля круглая, а карта плоская, и поверхность шара невозможно развернуть на плоскость без деформаций. По этой причине в картографии используют проекции. Поекции это правила и формулы преобразования одних координат в другие. Обычно используется преобразование из сферических (географических) координат в прамоугольные координаты (координаты карты). Проекции бывают равноплощадными или равноугольными, то есть сохраняют площадь объектов или углы. Иногда проекция может искажать и то и другое, минимизируя искажения вобщем. Для нашей страны стандартной сиситемой преобразования является система координат "42-ого года". Система "42-ого года" делит территорию земного шара на 60 зон, по 6 градусов. Тюменская область, например, находится в пределах 12-ой, 13-ой и 14-ой зон. "42-ой год" это равноплощадная проекция. ГИС устроены так, что могут хранить данные в одной системе координат, а отображать в другой. Поэтому необходимо не запутаться с тем, в какой системе координат хранятся данные, и в какой они отображены на карте. Чтобы уменьшить путаницу с проекциями Isoline поддерживает только два варианта исходных данных:

  • Прямогугольные координаты (любые произвольные координаты, к которым не применяется никаких преобразований).
  • Географические координаты (градусы, минуты, секунды, которые при отображении на карте пересчитываются в какую либо проекцию).

Вот варианты отображения одного и того же участка в разных системах координат и проекциях.

Проекция "поликоническая". Реальные координаты - градусы, отображаемые кординаты - градусы.

Проекция не установлена. Реальные координаты - "поликонические", отображаемые кординаты - прямоугольные.

Проекция не установлена. Реальные координаты - градусы, отображаемые кординаты - прямоугольные.

Проекция "поликоническая". Реальные координаты - "поликонические", отображаемые кординаты - прямоугольные.

Как видно из рисунков два верхних нас вполне устраивают, а третий и четвертый нет. Третий рисунок, на самом деле, вполне корректен, но проекция не указана, и поэтому мы видим изображение "как есть", в градусах. На четвертом рисунке мы попытались отобразить полигон, данные которого не градусы, в проекции "поликонической" и система нас не поняла. Из этого можно сделать следующее заключение: для прямоугольных координат устанавливать проекцию нельзя, так как в этом случае формулы преобразования применяются к ним второй раз, и изображение получается неверным.

Также необходимо принимать во внимание такой факт, что прямая проведенная в одной системе координат не является прямой в другой системе, а площади объектов могут отличаться, даже если проекции равноплощадные.

Прямоугольные координаты

"поликонические", без корректировки отображения.

Координатная сиситема Мольвейде.

поликонические", с корректировкой отображения.

Поэтому если вам нужны точные длины линий, точные площади, и точное отображение, то необходимо воспользоваться специальными средствами системы.

Задачи, которые решает ГИС

ГИС общего назначения, в числе прочего, обычно выполняет пять процедур (задач) с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию.

Ввод

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование

Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление

В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ

При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация

Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

Технологии, связанные с ГИС

ГИС тесно связана рядом других типов информационных систем. Ее основное отличие заключается в способности манипулировать и проводить анализ пространственных данных. Хотя и не существует единой общепринятой классификации информационных систем, приведенное ниже описание должно помочь дистанциировать ГИС от настольных картографических систем (desktop mapping), систем САПР (CAD), дистанционного зондирования (remote sensing), систем управления базами данных (СУБД или DBMS) и технологии глобального позиционирования (GPS).

Системы настольного картографирования используют картографическое представление для организации взаимодействия пользователя с данными. В таких системах все основано на картах, карта является базой данных. Большинство систем настольного картографирования имеет ограниченные возможности управления данными, пространственного анализа и настройки. Соответствующие пакеты работают на настольных компьютерах - PC, Macintosh и младших моделях UNIX рабочих станций.

Системы САПР

Системы САПР способны чертежи проектов и планы зданий и инфраструктуры. Для объединения в единую структуру они используют набор компонентов с фиксированными параметрами. Они основываются на небольшом числе правил объединения компонентов и имеют весьма ограниченные аналитические функции. Некоторые системы САПР расширены до поддержки картографического представления данных, но, как правило, имеющиеся в них утилиты не позволяют эффективно управлять и анализировать большие базы пространственных данных.

Дистанционное зондирование и GPS

Методы дистанционного зондирования - это искусство и научное направление для проведения измерений земной поверхности с использованием сенсоров, таких как различные камеры на борту летательных аппаратов, приемники системы глобального позиционирования или других устройств. Эти датчики собирают данные в виде изображений и обеспечивают специализированные возможности обработки, анализа и визуализации полученных изображений. Ввиду отсутствия достаточно мощных средств управления данными и их анализа, соответствующие системы вряд ли можно отнести к настоящим ГИС.

Системы управления базами данных предназначены для хранения и управления всеми типами данных, включая географические (пространственные) данные. СУБД оптимизированы для подобных задач, поэтому во многие ГИС встроена поддержка СУБД. Эти системы не имеют сходных с ГИС инструментов для анализа и визуализации.

Что ГИС могут сделать для Вас

Делать пространственные запросы и проводить анализ

Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниях сэкономить миллионы долларов. ГИС помогает сократить время получения ответов на запросы клиентов; выявлять территории подходящие для требуемых мероприятий; выявлять взаимосвязи между различными параметрами (например, почвами, климатом и урожайностью с/х культур); выявлять места разрывов электросетей. Риэлторы используют ГИС для поиска, к примеру, всех домов на определенной территории, имеющих шиферные крыши, три комнаты и 10-метровые кухни, а затем выдать более подробное описание этих строений. Запрос может быть уточнен введением дополнительных параметров, например стоимостных. Можно получить список всех домов, находящих на определенном расстоянии от определенной магистрали, лесопаркового массива или места работы.

Улучшить интеграцию внутри организации

Многие применяющие ГИС организации обнаружили, что одно из основных ее преимуществ заключается в новых возможностях улучшения управления собственной организацией и ее ресурсами на основе географического объединения имеющихся данных и возможности их совместного использования и согласованной модификации разными подразделениями. Возможность совместного использования и постоянно наращиваемая и исправляемая разными структурными подразделениями база данных позволяет повысить эффективность работы как каждого подразделения, так и организации в целом. Так, компания, занимающаяся инженерными коммуникациями, может четко спланировать ремонтные или профилактические работы, начиная с получения полной информации и отображения на экране компьютера (или на бумажных копиях) соответствующих участков, например водопровода, и заканчивая автоматическим определением жителей, на которых эти работы повлияют, и уведомлением их о сроках предполагаемого отключения или перебоев с водоснабжением.

Принятие более обоснованных решений

ГИС, как и другие информационные технологии, подтверждает известную поговорку о том, что лучшая информированность помогает принять лучшее решение. Однако, ГИС - это не инструмент для выдачи решений, а средство, помогающее ускорить и повысить эффективность процедуры принятия решений, обеспечивающее ответы на запросы и функции анализа пространственных данных, представления результатов анализа в наглядном и удобном для восприятия виде. ГИС помогает, например, в решении таких задач, как предоставление разнообразной информации по запросам органов планирования, разрешение территориальных конфликтов, выбор оптимальных (с разных точек зрения и по разным критериям) мест для размещения объектов и т. д. Требуемая для принятия решений информация может быть представлена в лаконичной картографической форме с дополнительными текстовыми пояснениями, графиками и диаграммами. Наличие доступной для восприятия и обобщения информации позволяет ответственным работникам сосредоточить свои усилия на поиске решения, не тратя значительного времени на сбор и обмысливание доступных разнородных данных. Можно достаточно быстро рассмотреть несколько вариантов решения и выбрать наиболее эффектный и эффективный.

Создание карт

Картам в ГИС отведено особое место. Процесс создания карт в ГИС намного более прост и гибок, чем в традиционных методах ручного или автоматического картографирования. Он начинается с создания базы данных. В качестве источника получения исходных данных можно пользоваться и оцифровкой обычных бумажных карт. Основанные на ГИС картографические базы данных могут быть непрерывными (без деления на отдельные листы и регионы) и не связанными с конкретным масштабом. На основе таких баз данных можно создавать карты (в электронном виде или как твердые копии) на любую территорию, любого масштаба, с нужной нагрузкой, с ее выделением и отображением требуемыми символами. В любое время база данных может пополняться новыми данными (например, из других баз данных), а имеющиеся в ней данные можно корректировать по мере необходимости. В крупных организациях созданная топографическая база данных может использоваться в качестве основы другими отделами и подразделениями, при этом возможно быстрое копирование данных и их пересылка по локальным и глобальным сетям.

ГИС в России

Наибольшее распространение в России из зарубежных систем имеют: программный продукт ArcGIS компании ESRI , семейство продуктов GeoMedia корпорации Intergraph и MapInfo Professional компании Pitney Bowes MapInfo .

Из отечественных разработок широкое распространение получила программа ГИС Карта 2008 компании ЗАО КБ "Панорама" .

Используются также и другие программные продукты отечественной и зарубежной разработки: ГИС ИНТЕГРО , MGE корпорации Intergraph (использует MicroStation в качестве графического ядра), IndorGIS , STAR-APIC , ДубльГИС , Mappl , ГеоГраф ГИС , 4geo и пр.

Геоинформационные системы с развитием интернет-технологий приобретают большое значение как для личного пользования, так и для предприятий большого масштаба. При этом ГИС сейчас обеспечиваются современными программными средствами. Техподдержка осуществляется с разных точек – начиная от программ для рисования и проектирования схем, заканчивая снимками со спутниковых тарелок.

GIS – что это такое

Аббревиатура расшифровывается как «географические информационные системы». Целью этих проектов является ряд действий с пространственными данными:

  • их сбор путем фотографий с разных источников;
  • хранение на разных носителях, аккумуляция и последующая передача;
  • анализ, уточнение, корректировка изменений;
  • двухмерная и трехмерная визуализация.

Обеспечивает развитие технологий наука геоинформатика – симбиоз географии и информатики.

Основные черты ГИС:

  • работа с базой данных, постоянно пополняемой и обновляемой;
  • пространственная 3D-карта, ее обзор.

Также к этому присоединяются дополнительные возможности, например:

  • навигация (с определением местоположения);
  • проложение пути;
  • анализ земельных участков;
  • БД для кадастровых инженеров и геодезистов.

Работа постоянно ведется и с растровыми, и с векторными источниками, а вся информация идет слоями по географической привязке.

Преимущества создания геоинформационных систем с помощью программного обеспечения

Вот плюсы использования GIS:

  • большой аналитический ресурс;
  • множество инструментов для обработки и использований сведений;
  • легкое восприятие данных пользователей (наглядность изображения);
  • автоматизированные сводки и отчеты по выбранным параметрам;
  • расшифровка информации, полученной из аэро- и спутниковой съёмки;
  • значительная экономия временных, денежных затрат и трудоресурсов из-за свободного доступа;
  • возможность удаленного и оперативного создания 3D-модели любого объекта;
  • автоматический ввод данных;
  • сборка отчетов в виде таблиц или диаграмм;
  • определение присутствия или отсутствия в рамках заданных координат построек;
  • изучение геопространственных сведений – плотность населения, количества производственных зданий на процент жилых помещений и проч.

Геоинформационными системами пользуется широкий круг лиц, используя при этом компьютерные программы или приложения для гаджетов.

Пользователи:

  • Кадастровые инженеры. Их сфера деятельности – обзор земельных участков, их анализ, кадастр, межевание земель, расположение границ, пересечений, решение спорных вопросов, составление актов, внесение в Росреестр.
  • Предприниматели, владеющие сетями объектов – магазинов, автомобильных заправок, заводов или любых других точек со связью между ними. Это упрощает планирование, управление, а также планы на расширение или уменьшение системы.
  • Инженерные изыскания: геологические, географические, экологические и другие. Специалисты получают возможность через программы ГИС создавать список участков и их особенностей в рельефе, ландшафте.
  • Разработчики и проектировщики строений с начала или реконструкций зданий.
  • Архитекторы.
  • Картографы. GIS помогают создавать карты любых форматов на любые участки местности с большей или меньшей детализацией на различную тематику – маршрутизаторы, ландшафтные и проч.
  • Штурманы и водители любого транспорта – наземного, воздушного, водного.
  • Частные пользователи – все чаще обычные горожане пользуются электронными ресурсами для поиска пути.

Дополнительные сферы:

  • Природоохранительные мероприятия – мониторинг экологии, управление ресурсами, всеми участками природы.
  • Геология и добыча горной руды – разработка месторождений.
  • Аналитика возможных чрезвычайных ситуаций.
  • Войны и охранительные учреждения – разработка стратегии с электронными ресурсами становится легче.
  • Сельское хозяйство.